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ABstrAct

In this article we describe in detail the Bayesian perspective on statistical inference and 
demonstrate that it provides a more principled approach to modeling public administration 
data. Because many datasets in public administration are population-level, one-time unique 
collections, or descriptive of fluid events, the Bayesian reliance on probability as a descrip-
tion of unknown quantities is a superior paradigm than that borrowed from Frequentist 
methods in the natural sciences where experimentation is routine. Here we provide a thor-
ough, but accessible, introduction to Bayesian methods and then demonstrate our points 
with data on interest group influence in US state administrative agencies.

IntroductIon

This essay introduces Bayesian statistical inference and argues that it provides an ideal 
research paradigm for empirical scholars in public administration. We work in a field 
that generally uses data incompatible with standard Frequentist statistical thinking 
because they are usually population measures that can never be repeated as if  in a 
standard experimental setting. Those working with public administration data need 
an approach that recognizes that the data are one-time events or collections that usu-
ally describe an entire set of objects of interest. Samples also often emerge from sur-
vey research collections, and these data are also treated appropriately by the Bayesian 
approach.

Most nonstatisticians are nonplussed in learning that there are different “philo-
sophical” approaches to statistics. Understandably, basic courses in graduate school 
emphasize collecting a set of useful tools rather than an introspective look at the theo-
retical underpinnings of statistical analysis. Unfortunately this leads to practices that 
are often wrong later in one’s career. Therefore some research that we read in public 
administration journals and texts is misleading and unproductive to the discipline, 
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though it could be easily improved. Surprisingly, little attention has been focused on 
this problem. One exception, Gill and Meier (2000), argued forcefully for a set of more 
appropriate practices for data analysis and inference in the field. Yet this tome has 
fallen on relatively deaf ears, and Bayesian analytical methods remain an apocrypha 
to empirical scholars in public administration.

Here we seek to improve this state of affairs. Our objective is to describe Bayesian 
methods and Bayesian statistical inference in detail, but in such a way that it is read-
able and accessible to a wide audience of public administration scholars. In doing 
so, we hope to show that the Bayesian perspective is more appropriate for the type 
of data we encounter in the discipline, provides more intuitive results through prob-
ability statements, and is only slightly more difficult to implement than non-Bayesian 
approaches given the convenience of modern statistical software. To illustrate these 
points and the Bayesian process, we provide step-by-step tutorial instructions using 
data from the US states concerning self-reports by state-level administrators about 
the influence of organized interests on agency budgets and policy. This example is 
intended to enable new users of Bayesian methods to immediately apply this process 
to their own data, as well as to show that there is a natural fit between public admin-
istration data and Bayesian probability modeling.

There are strong substantive reasons that scholars in public administration should 
prefer the Bayesian approach to data analysis and inference. Often times the decision-
making process for public managers is Bayesian in the sense that executives update 
past beliefs and actions based on acquired political and administrative information. 
Boyne, Meier, O’Toole, and Walker (2006, 638), in fact, bluntly state that “managers 
operate in a Bayesian world.” Therefore researchers studying bureaucratic behavior 
have research objectives which “fits exactly the assumptions of Bayesian statistics and 
fits poorly with the assumptions of classical statistics” (2006, 638). Many datasets in 
public administration are population-level, one-time unique collections, or descriptive 
of fluid events. So the Bayesian reliance on probability as a description of unknown 
quantities is a superior paradigm than that borrowed from Frequentist methods in the 
natural sciences where experimentation and detailed control is routine.

In addition, we contribute to substantive debates regarding the influence of organ-
ized interests in agency processes. Contracting and loose governance networks have 
some potential advantages over traditional, top-down, bureaucratic approaches (Kettl 
2000), but our findings further highlight some of the downsides of these arrange-
ments. We find that the extensive use of contracting is related to greater perceived 
interest group influence over agencies (Kelleher and Yackee 2009), and that manag-
ers who spend more than a typical amount of time with representatives of organized 
interests report that those groups have more influence over their budgets and policy. 
Thus, direct lobbying of public managers results in more influence over agency out-
comes, much as in the legislature. We also observe, however, that where legislatures are 
perceived to be more influential over agencies so too are organized interests. This sug-
gests that rather than constraining interest group influence, close political oversight  
by the legislature may actually enhance it because legislators often have close rela-
tionships with the organized interests attempting to influence the decision making of 
public managers (Stigler 1971; Witko 2011).
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A clAsh of PhIlosoPhIes

Bayesian statistical inference is based on fundamentally different assumptions about 
the data and parameters from classical methods. To Bayesians, all quantities are 
divided into two distinct groups: those that are observed and therefore fixed, and those 
that are unobserved and must be estimated. These observed quantities are usually the 
data at hand and values known with certainty. The unobserved quantities are usually 
the model parameters of interest and any missing data. In the Bayesian world the 
unobserved quantities are assigned distributional properties and, therefore, become 
random variables in the analysis. These distributions come in two basic flavors. If  the 
distribution of the unknown quantity is not conditioned on fixed data, it is called 
prior distribution because it describes knowledge prior to seeing data. Alternatively, 
if  the distribution is conditioned on data that we observe, it is clearly updated from 
the unconditioned state and, therefore, more informed. This distribution is called 
posterior distribution.

This distinction about what is random and what is fixed is at the heart of the 
debate between Frequentists and Bayesians. Bayesians view observed data as perma-
nently fixed, but unknown parameters are considered random quantities given distri-
butions based on the current level of knowledge. Conversely, Frequentists view data as 
stochastic, coming from a never-ending stream created by exactly the same generating 
process, but parameters are quantities fixed by nature and never changing. The latter 
approach is ideal in industrial quality control or experimental settings in some natural 
sciences where the researcher has the ability to generate large streams of independent 
identically distributed (IID) data. This is, unfortunately, not like the data we generally 
use in public administration research. We typically get a dataset that is situational in 
time and circumstance and will never be replicated. That is, we cannot go back and 
re-survey agency executives and assume that no attitudes, experiences, or administra-
tive events have changed. Thus, our datasets represent a fixed, unique look at the 
phenomenon of interest.

Unfortunately many scholars are confused about Frequentism. This term comes 
from the canonical work of Neyman and Pearson (1928a, 1928b, 1933a, 1933b, 1936) 
during the adolescence of statistical science. They posited a small fixed α value estab-
lished before experiments that eventually becomes the probability of a Type I error 
after many iterations. Because the data are presumed infinite and IID, it is possible 
to test very sharp hypotheses, and Frequentist hypothesis tests are always about two 
possible states of nature that cover all possible states of nature. Therefore rejection 
of  one hypothesis means acceptance of  the other, and neither is labeled as the “null.” 
Wait! We were all (correctly) told in graduate methods courses in social science depart-
ments that you can never accept a hypothesis because there are an infinite number of 
alternative hypotheses that have not been tested. What this means is that we do not 
set up our hypothesis testing and inference engine in a Frequentist fashion. In fact, it 
would be very difficult to set up a true Frequentist test in public administration since 
our subjects are not experimentally cooperative and change characteristics over time 
(even a short period of time).

So, if  the bulk of public administration scholars calling themselves Frequentists are 
really not Frequentists, then what are they? They are actually Fisherian likelihoodists, 
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although burdened with a poor testing paradigm. The flawed null hypothesis signifi-
cance test (NHST) is deeply ingrained in the social sciences and it forces an illegiti-
mate (in both senses of the word) blend of Frequentism and Likelihoodism. Fisher’s 
likelihood-based test of hypotheses does not require a priori fixing of an α level and 
does not require two complementary, exhaustive hypotheses. Instead, it sets up a null 
hypothesis which is just something to be nullified in Fisher’s construct, but is gen-
erally used as a claim that there is no specific between-variable relationship in the 
data. He believed that a prior determination of α was overly rigid and nonscientific. 
Unfortunately the NHST provides an inconsistent and logically defective combina-
tion of these two opposites (Gill 1999).

Fortunately, empirical researchers in public administration do not rigidly adhere 
to the NHST process and typically just look at evidence from a maximum likelihood–
based estimation process to make claims about relationships in data. This is what makes 
them Likelihoodists. The punchline is this: All likelihood-based models are Bayesian 
models in which the prior distribution is an appropriately selected uniform prior, and 
as the size of the data gets large they are identical given any finite appropriate prior. So 
such empirical researchers are really Bayesian; they just do not know it yet.

With the dramatic increase in Bayesian methods in the social sciences, there are 
frequent applications to GLMs, causal inference, time-series, change-point problems, 
ideal point estimation, expert elicitation, missing data imputation, genetics analysis, 
textual analysis, ecological inference, neural networks, structural equation models, 
nonparametrics, and factor analysis. This long list is revealing because it demonstrates 
that Bayesian approaches are not just another “hammer” in the researcher’s toolbox 
but are instead a general philosophical way of thinking about data and estimation. 
For a recent detailed discussion, see Samaniego (2010).

The Bayesian approach will continue to gain in popularity because it is perfectly 
suited for the observational data we deal with and the theories we are concerned about 
in public administration. Almost no scholar in the discipline believes that the phe-
nomenon they care about is fixed and unyielding over time and circumstance. Instead, 
we care about quantities such as the likelihood that a public policy implementation 
is effective, the probability of a budgetary outcome, the tendency for administrators 
to interact with legislators, and so on. These, and other related concerns, are by defi-
nition varying quantities and, therefore, best described with distributions as in the 
Bayesian approach. Also, public administration is a field tied to history in the sense 
that, unlike the other social sciences, we can point to a record of programs, behaviors, 
and policies in government that have been assessed by scholars, journalists, and other 
observers over time. Thus a research paradigm that lets previous information, both 
qualitative and quantitative, to be systematically included into the modeling process is 
ideal for studying the administrative working of government.

BAyesIAn foundAtIons

The Bayesian inference process specifies prior distributions for unknown parameters 
and updates these to become posterior distributions using observed data contained 
in the standard likelihood function. So this process is really just a slight variant of 
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conventional likelihood inference, which includes previously known relevant facts. 
This updating step can be repeated as new data are observed, and therefore the 
Bayesian inference process is a principled incremental process of  scientific discovery. 
In this section, we carefully step through the stages of  Bayesian inference in a social 
science setting (for additional details, see book-length expositions such as Gill 2008 
or Gelman, Carlin, Stern, and Rubin 2003). Our exposition starts with an arbitrary 
data vector, X, whose distribution is conditioned on an unknown parameter, β , and 
then proceeds to the standard regression setting where a matrix of  explanatory vari-
ables, X, affects an outcome variable vector, y,  conditional on an unknown param-
eter vector, β .

the Prior distribution

Prior distributions range from very informative descriptions of previous research in 
the field to purposefully vague forms that reflect relatively low levels of prior knowl-
edge about the effect in question. This level of information is dependent on the volume 
and reliability of previous studies on the topic of interest. This part of the process is 
not a necessary inconvenience imposed by the process. Instead it is an opportunity 
to systematically include qualitative, narrative, and intuitive knowledge into our sta-
tistical models. There is a lot of historical controversy surrounding the assignment 
of prior distributions, and this leads many applied Bayesians in the social sciences 
to use highly diffuse forms such as the uniform distribution. But informed prior dis-
tributions are incredibly useful for integrating nonquantitative information into the 
statistical model. The two critical requirements for informed prior distributions are 
defending the source of the information used and showing the impact of this prior 
distribution relative to some reference form.

Prior distributions are probability statements about some parameter of interest, 
β, that are not conditioned on the data being considered, denoted p( )β . We could 
stipulate a uniform distribution by using p k a b( ) = , < <β β , meaning that there is 
constant probability that β  takes on some value between a  and b . If  we assert that 
β µ σ  ( , )2 , then this is a belief  that before conditioning on new data β  is normally 
distributed around µ  with variance σ2 .  Frequently, if  there is little prior information 
about this parameter, then researchers can use a normal distribution with µ = 0  and 
large σ 2 ,  in order to give a vague or cynical statement about the efficacy of β as an 
important phenomenon. It is critical, also, to give a prior distribution that has the 
same support (defined over the measured support on the x-axis) as the parameter in 
the model. For instance, in modeling a variance components parameter, we would 
want to stipulate a prior distribution bounded by (0, )∞ . This makes the gamma dis-
tribution a popular choice for Bayesian specifications of variance terms.

Where do prior distributions come from? Often there is substantial guidance from 
previous studies by the researcher or strong suggestions from published work. In the 
latter case, a meta-analysis of some germane literature may strongly suggest param-
eters for a normal or students-t form. There is also a literature on “expert elicitation” 
whereby substantive experts, usually with no interest in or connection to the statistical 
aspect of the study, are systematically queried in such a way that prior distributions 
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are produced from their qualitative responses (Gill and Freeman 2013; Gill and Walker 
2005). Prior elicitation is often straightforward for obtaining prior means but challeng-
ing for getting an informed view of the prior variance from elicitees as uncertainty can 
be more difficult to translate. We might also want to recognize that researchers with 
deep contextual knowledge, and a long history of studying some question in public 
administration, may have enough intuition to specify a personalized prior, even if  this 
requires substantial justification to readers. A very popular approach is to specify con-
jugate priors, which is a mathematically convenient form whereby the distributional 
family of this prior flows through to the final distribution (albeit with different param-
eterization). See the developed example under the Model Development section below 
where the prior distribution for the linear regression parameters is specified as a nor-
mal (Gaussian) form and the model produces normal distributions for the final param-
eter estimates. Sometimes it is reasonable to use other data sources or a fraction of the 
current data to empirically produce a prior distribution in the same way that histogram 
or smoother implies a distribution, although this can be controversial. Finally, many 
authors specify priors for diagnostic purposes, such as using a uniform distribution 
to show a contrast with some more informed version from one of the sources just 
described. This can show the relative “influence” of some desired form relative to a 
benchmark that readers easily identify with. The key point is that priors can come from 
many sources, and as long as the justification is reasonable then the resulting specifica-
tion is principled. It is also important to observe that the overwhelming proportion 
of prior distributions specified in published Bayesian social science work still avoids 
using reasonably informed priors, which unfortunately hurts the steady accumulation 
and progression of scientific knowledge. Note finally that statistically unreasonable pri-
ors are: those that are not specified on the same support (the range of the variable 
described), forms that have high density in substantively illogical regions, and expres-
sions that are unnecessarily mathematically complicated given the phenomenon being 
described. See Gill (2008, chapter 5) for a detailed discussion of relevant issues.

the likelihood function

The second step is to stipulate a likelihood function in the usual manner by assigning 
a parametric form for the data and plugging in the observed data. This step is done in 
exactly the same manner as any other likelihood-based statistical model, as commonly 
practiced in public administration. Note that this process is just as subjective as the 
choice of the prior distribution. This means that the researcher needs to justify this 
parametric form to readers as well.

Some collected data X, an n ×1  vector of observations, are treated Bayesianly 
as a fixed quantity and we make a reasoned assumption about the probability mass 
function (PMF) or probability density function (PDF) for describing the original data 
generation process conditioned on a single unknown parameter, β . The well-known 
maximum likelihood estimation process substitutes the unbounded notion of likeli-
hood for the bounded definition of probability by first considering a function that is 
the joint distribution of the observed data:

 p p p p pn n( | ) = ( | ) ( | ) ( | ) ( | ),1 2 1X X X X Xβ β β β β� −  (1)
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where p i( | )X β  is the assigned PMF or PDF. Fisher’s (1922, 1925a, 1925b, 1934) 
notion was to turn this around logically, noting β  to be the unknown value and X  
to be the known values. Accordingly, equation (1) is relabeled as L( | )β X , which is of 
course the likelihood function. Note that this is subtly a very Bayesian process in the 
way described above since the data are now the fixed quantity.

The process continues in finding the value of β  that is most “likely” to have gen-
erated the observed data. This is a simple process since the standard forms of the PMF 
and PDF used are guaranteed to produce a unimodal function concave to the x-axis. 
Therefore there is a unique value at the top of this hill, ˆ,β  that maximizes the function 
L( | )β X . Furthermore, this value is easily found with standard calculus tools: Take 
the derivative of L( | )β X  (called the score function) to produce a function that gives 
the slope of the tangent line for any give β, then figure out where this tangent line has 
slope zero, since that is the unique point at the top of the unimodal function. The sec-
ond derivative of the likelihood function at this modal point leads to the variance of 
the estimate (through the negative inverse expected value). Bayesian inference actually 
goes further than this conventional process because it estimates and describes the full 
distribution of the results, not just a point estimate and curvature around it.

the Posterior distribution

The third step is to produce a posterior distribution by multiplying the prior dis-
tribution and the likelihood function, which is the numerator of Bayes’ Law: 
p A B p B A p A p B( | ) = ( | ) ( )/ ( ).  So the likelihood function uses the data through the 

likelihood function to update prior knowledge into posterior knowledge. The poste-
rior distribution represents the most informed set of knowledge about the phenom-
enon of interest because it is the most updated version available. It is also important 
to note that the posterior distribution tells us everything we know about the effect of 
interest through a distribution. This is more information than the typical summary 
from a likelihood analysis: a single point estimate and a measure of curvature around 
it. A distributional summary allows more description: the mode, mean, or median of 
the distribution, as well as any quantiles of interest.

Suppose we have a single parameter of interest, denoted β, and a vector of data, 
denoted X. Then the steps of Bayesian inference are summarized in the proportional 
version of Bayes’ Law:

 Posterior probability Prior probability Likelihood function∝ ×

 π β β β( | ) ( ) ( | ),X X∝ ×p L  (2)

where π β( | )X  is the resulting posterior distribution from conditioning the prior 
distribution, p( )β , on the likelihood function, L( | )β X . Here π()  is used to distinguish 
the posterior distribution from the prior distribution, p(). The use of proportionality 
(∝) may seem curious here. This results from leaving out p( )X  from the denominator 
of equation (2). Recall that to a Bayesian the data are fixed once observed, mean-
ing that the quantity p( )X  actually has no probabilistic properties to account for in 
the calculation of π β( | )X  here. Therefore the only purpose for this quantity in the 
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calculation of the posterior distribution is to make the posterior distribution fully 
normalized: summing or integrating to one over its total support. Since this is an easy 
value to recover later in the process,1 it is usually more convenient to ignore this dif-
ference in the calculation and to renormalize at the final step. As we shall see on later, 
p( )X  is useful for model comparison purposes.

The production of a posterior distribution is described in figure 1. Here we show 
that the posterior distribution is a compromise between prior information and likeli-
hood information. When the data size is large the likelihood function has more influ-
ence and pulls the posterior closer to its location. Conversely, when the data size is 
small and the prior distribution has a nondiffuse form, the resulting posterior is closer 
to this prior. These countervailing effects are called shrinkage and we can measure how 
much the likelihood function shrinks some statistic, say the posterior mode, towards 
its mode, away from the prior distribution.

The posterior distribution can also be treated as a new prior distribution if addi-
tional data are later observed. In this way the parameter of interest is updated and 
knowledge is accumulated over time. Suppose π β1 1( | )X  is the posterior from equation 
(2) with the data X1 . Later a new dataset, X2 , is observed and we treat π β1 1( | )X  as a 
prior for a second update. Then π β π β β2 2 1 1 2( | ) ( | ) ( | )X X X∝ L  is a new posterior dis-
tribution. Interestingly this is the same distribution we would get if X1  and X2  arrived 
together and we created a posterior based on them at once, π β π β2 2 1,2 1 2( | ) = ( | , )X X X .

summarizing Bayesian results

Unlike the seriously flawed NHST, evidence from a Bayesian model is presented by 
summarizing the posterior distribution in various informative ways. This is typically 

1  Suppose we end up with a nonnormalized posterior distribution for β that sums or integrates to something 
other than one, say 2.3 just to make up a value. Then simply dividing the PDF or PMF by 2.3 would return the 
probability statement to a regular normalized distribution in every sense.

figure 1
Posterior Production
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done with distributional quantiles and probability statements. These are interpreted as 
the probability that the parameter of interest is less than/greater than some constant, 
or the probability that this parameter occupies some region of the support, for exam-
ple p( > 0)β . It is useful to be able to say something like the (posterior) probability that 
previous government experience for an agency head could lead to a better working 
relationship with the legislature is 0.93. Notice that such statements are a function of 
the posterior mean and the posterior variance, both of which are determined jointly 
by the prior distribution and the likelihood function. Therefore we care not only about 
where the posterior is centered but also how dispersed it is around this point, which 
indicates relative uncertainty. Such posterior statements are also free of an explicit 
null hypothesis or a null statement, although the zero point is often implied as one. 
This means that we are free from the encumbrance of NHST fixations and can make 
statements of substantive interest to public administration scholars in simple proba-
bilistic terms that focus on the question of interest.

There is no reason that the Bayesian posterior distribution cannot be simply 
described with a mean and standard deviation (which corresponds to a standard error 
in conventional models). This means that authors can build a regression table that 
looks like regular forms, except of course that “stars/asterisks” are inappropriate. So 
Bayesian results can be given in very accessible formats and readers do not need to 
learn some new exotic reporting criteria.

Interval summaries

There is also a Bayesian analog to confidence intervals called the credible interval. 
This is constructed in exactly the same way as a confidence interval (a point estimate 
plus/minus some critical value times the standard error). However, the interpretation 
is different and it is exactly the interpretation that first-time readers mistakenly assign 
to the confidence interval: the probability that some effect exists between two bounds. 
The Frequentist confidence interval is really an interval that over 1/α  replications of 
the exact same experiment cover the true fixed value of the parameter on average with 
probability 1− α .

There is also a more flexible version of the Bayesian confidence interval, called the 
highest posterior density (HPD) interval. This is the region of the support of β that 
contains the highest 1− α posterior density regardless of whether it is continuous or 
not. So the HPD interval can be multiple intervals with multimodal posterior forms. 
Like Frequentist confidence intervals, an HPD region that does not contain zero implies 
that the coefficient estimate is deemed to be reliable, but instead of being (1 )− α % “con-
fident” that the interval covers the true parameter value over identical replications, an 
HPD interval provides a (1 )− α % probability that the true effect is in the interval.

testing

Hypothesis testing with an explicit decision can also be performed in the Bayesian 
setup. Bayesian hypothesis testing is less fixated with a “null” model, although it is com-
mon to evaluate estimated regression effects relative to the zero point. More commonly 
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Bayesians seek to compare two plausible models against each other (Raftery 1995). 
Suppose β1  and β2

 represent two competing hypotheses about the state of β. These two 
form a partition of the sample space:  = 1 2β β∪ , and β β1 2 =∩ ∅. First prior prob-
abilities are assigned to the two outcomes: π β β1 1= ( )p ∈ , π β β2 2= ( )p ∈ . Therefore 
there are two resulting posterior distributions from the application of two different 
priors on the same likelihood function: p p1 1= ( | )β β∈ X  and p p2 2= ( | )β β∈ X . Now 
we just need to compare these posteriors to test H1  versus H2 .

The prior odds are defined by the ratio p p1 2/ , and the posterior odds, π π1 2/ . These 
can be combined as the ratio of ratios ( / )/( / )1 2 1 2π π p p  (posterior odds over prior odds), 
which is called the Bayes Factor (Kass and Raftery 1995). The Bayes Factor is inter-
preted as odds favoring H1 versus H2 given the observed data. So if  the Bayes Factor 
is much larger than one the test favors H1 , and if  the Bayes Factor is much smaller 
than one the test favors H2 . Values around one indicate a lack of evidence favor-
ing either hypothesis. This is one area where the omitted denominator of equation 
(2) is important. To provide a more complete version of Bayes’ Law than that using 
proportionality, we would include the denominator p p L d( ) = ( ) ( | )X X

β
β β β∫ . This 

term is typically called the marginal likelihood, the normalizing constant, the normal-
izing factor, or the prior predictive distribution, although it is actually just the marginal 
distribution of the data, and ensures that π β( | )X  sums or integrates to one in the 
expression of Bayes’ Law, which for models (e.g., hypotheses) means that:

 π( | ) = ( )/ ( ) ( | ),M p M p p MX X X×  (3)

where p M( )  denotes the prior on the model (hypothesis).
The intuition behind Bayes Factors in a regression setting is best understood with 

the abstraction of two competing models, M1  and M2 , defined by two sets of pos-
sible sets of explanatory variables, β1  and β2 , using the same data X. Interestingly, 
β1  and β2 do not need to be nested as with a standard likelihood ratio test, which is 
a major advantage over non-Bayesian approaches. The prior vectors for these regres-
sion parameters are given by: p1 1( )β and p2 2( )β , and since the better model is also 
an unknown we can assign prior probabilities: p M( )1  and p M( )2 . The posterior odds 
ratio in favor of Model 1 against Model 2 is produced by Bayes’ Law:

 
π
π
( | )
( | )

=
( )/ ( )
( )/ ( )

1

2

1

2

M
M

p M p
p M p

X
X

X
X

posterior odds p
� ���� ����

rrior odds/data
� ����� �����

×
∫
∫

β

β

β β β

β
1

1 1 1 1 1

2
2 2

( | ) ( )

( | )

f p d

f p

X

X 22 2 2( )
.

β βd

Bayes Factor
� ��������� ���������

 (4)

So the quantity of interest turns out to be the ratio of marginal likelihoods from 
the two regression models. Unfortunately the Bayes Factor can be difficult to calculate 
numerically with elaborate regression models. This is still an elegant testing structure 
that clearly shows the advantage of one model over another is simple settings (if  there 
is one). However in more elaborate regression settings, the calculation of equation (4) 
can be challenging. Therefore applied Bayesians have sought more computationally 
convenient comparison tools, the most important of which we now describe.

A more modern testing tool is the Deviance Information Criterion (DIC; 
Spiegelhalter et  al. 2002). This measure, commonly called the DIC, is designed to 
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be a Bayesian version of the well-known AIC, the Akaike Information Criterion 
(Akaike 1976), which was designed to balance model fit and covariate parsimony by 
comparing the log-likelihood for a fit model to the number of parameters ( p ) used: 
AIC = 2 ( | ) 2− +� ˆ .β X p Consider again a model likelihood or posterior defined by 
p( | )X β  for data matrix X  and “true” parameter vector β . The “Bayesian Deviance” 

for this model is minus two times the log of this quantity plus two times the marginal 
likelihood of the data only, which unwinds the ratio of the likelihood and the data 
component in log terms.

 D p f( ) = 2 [ ( | )] 2 [ ( )],β β− +log logX X  (5)

and if  we substitute in an estimate of β then this expression can be thought of as the 
deviance of the means. It turns out that the 2 [ ( )]log f X  term is unimportant since it 
will cancel out in model comparisons, as we will see. So now modify this expression by 
averaging (taking expectations) over the parameters according to this distribution to 
get a mean deviance (difference) measure of model fit:

 D E p f p d f= [ 2 ( ( | )] 2 [ ( )] = 2 [ ( | )] 2 [ ( )]β β
β β β− + − +∫log log log logX X X X ,,  (6)

Intuitively, 
β

β β∫ log[ ( | )]p dX is smaller for better fitting models because the dis-
tribution p( | )X β is closer to the actual underlying phenomenon that we are trying to 
estimate with the model. This expectation (integration) sounds hard but we basically 
get its calculation “for free” through Markov chain Monte Carlo (MCMC) estimation 
described in the next section since it generates samples for a numerical version of this 
calculation automatically as part of the β estimation process. Now notate �β as a point 
estimate of the coefficient vector β . This is a flexible definition but in practice it is usu-
ally the posterior distribution mean. The difference between D (which integrates over 
the parameter space) and substituting �β into equation (5) gives a single value:

 p D DD = ( )− �β  (7)

This is, therefore, the “mean deviance minus the deviance of the means,” and is 
interpreted as the effective dimension of the model, which is analogous to the number 
of parameters p, in the AIC. The pD has to be a more nuanced complexity measure 
since parameters in a Bayesian hierarchical model have varying roles depending on 
their placement in the levels of the model (e.g., dependencies on other parameters) 
and the restrictions placed by different prior specifications.

The DIC is the difference between model fit and model dimension,

 DIC = = 2 ( ),D p D DD+ − �β  (8)

giving a trade off  in the AIC sense, except that the AIC uses a single plug-in value for 
the fit component rather than integrating over unknown (to be estimated) parameters. 
So in comparing two models we can claim that the one with the lower DIC value pro-
vides the better compromise between model fit and covariate parsimony. Conveniently, 
commonly used Bayesian estimation software provides this value for a specified model 
and we are freed from the mechanics of the calculations above.
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everyBody Is A BAyesIAn

As different as the Bayesian inferential process may initially appear, we can see that 
it subsumes likelihood analysis. We have already noted that scholars in public admin-
istration do not generally have the ability to be Frequentists due to the nature of the 
objects we study. So the real comparison of interest is between the standard likeli-
hood-based approach and the Bayesian approach. The maximum likelihood estimate 
is equal to the Bayesian posterior model with the appropriate uniform prior, and they 
are asymptotically equal given any prior: Both are normally (Gaussian) distributed 
as the data size gets large. Furthermore, in many cases the choice of a prior is not 
especially important since as the sample size increases, the likelihood progressively 
dominates the prior for any reasonable choice of the prior.

Although the assignment of a prior distribution for unknown parameters can be 
seen as subjective (actually all statistical models are subjective), there are often strong 
arguments for particular forms of the prior: Little or vague knowledge often justifies 
a diffuse or even uniform prior; certain probability models logically lead to particular 
forms of the prior (conjugacy); and the prior allows researchers to include additional 
information collected outside the current study (as we do in the examplein a later section).

BAyesIAn stochAstIc sIMulAtIon

The post-1990 Bayesian estimation engine of MCMC is the most powerful vehicle for 
obtaining model results available in statistics. MCMC was introduced into the general 
statistical literature by Gelfand and Smith in a 1990 review article that appeared in the 
Journal of the American Statistical Association after the idea was lying undetected in 
statistical physics for almost 40 years. Bayesian stochastic simulation, which is a descrip-
tor of MCMC, replaces pen-and-paper analytical calculations and standard software-
driven numerical mode finding with an iterative computational process that explores and 
describes multidimensional posterior distributions, which may be impossible to integrate. 
Integration is necessary here to go from a joint probability statement of many dimensions 
to a regression table that describes each coefficient effect in marginal (individual) terms.

This MCMC process is done by running a Markov chain, which will wander 
through the sample space preferring high-density areas in proportion to the underly-
ing posterior probabilities. Consider the posterior distribution of interest as a geo-
graphic region to be described, say Central Park in New York City. Our Markov chain 
is nothing more than a robot that walks randomly around the park, storing the eleva-
tion values where it visits on its hard drive. The Markovian process is the probabilis-
tic component that dictates moves of the robot from one place in Central Park (the 
sample space) to another. Furthermore, the structure that underlies these probability 
decisions is conditional only on where the robot is right at that moment: It does not 
care where it has visited before. Conversely, a maximum likelihood estimation robot 
would go to the highest elevation in Central Park and never leave.

Since each step of the chain is a multidimensional position, marginalizing the 
joint posterior is simply equivalent to looking at the history of each dimension indi-
vidually. In the case of our robot we would look separately at the latitude or the longi-
tude values at each step of its walk, ignoring the other, and that is all is necessary for 
marginalization. Marginalizing is what we want since a row of the regression table is 
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just a marginal summary of a particular coefficient estimate. Generally this process is 
straightforward with modern software, as described in a later section. Some challenges 
include assessing convergence of the chain, getting efficient mixing through the sam-
ple space, and setting up the initial probability statements (Gill 2008). Convergence 
assessment is a mechanical process that uses simple diagnostics to describe stability of 
the Markov chain at any moment in time with the objective of claiming that the chain 
is in its stable (stationary) distribution that describes the posterior of interest. We walk 
through these steps in detail for our empirical example in a later section and supply 
theoretical details in Appendix B.

There are two principle MCMC algorithms. Gibbs sampling draws iteratively 
through a complete set of conditional probability statements for each estimated 
parameter in the model. So the user, or the software, needs to express probability 
functions where each parameter is on the left side of the conditional statement and 
any parameters plus the data are on the right side of the conditional. For param-
eter βk  and a parameter vector not including this parameter, β −k , this looks like 
π β β( | , )k k− X . The Metropolis–Hastings algorithm performs a single multidimen-
sional move on each step by drawing from a proposal distribution and making an 
accept/reject decision based on the quality of this draw. If  the new point has higher 
posterior probability than the current position of the Markov chain, then the decision 
is always to move to that point. If  it has lower posterior probability than the current 
point, then the Markov chain will move there based on the ratio of probabilities: 
π β π β( )/ ( )candidate position current position . Therefore unlike the Gibbs sampler, the Metropolis–
Hastings algorithm may reject moving to a new position and choose to make the cur-
rent position the next step in the Markov chain.

To more fully demonstrate the MCMC process, consider figure 2 where we follow 
the path of the first two parameters from the model estimated below with a Gibbs 

figure 2
Gibbs Sampler Paths for Two Selected Parameters
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sampler. Since the posterior distribution being explored here is 76 dimensions (75 
parameters in the model plus posterior density, as described in the next section), we 
cannot show the full structure. However, picking two dimensions gives a view of the 
behavior of the Markov chain that can be extrapolated to other dimensions. The first 
panel shows the path of the first 100 iterations of the Markov chain. Notice that 
the first draw of the chain is in the upper right hand side of the parameter space at 
[9.5695,11.0518]  as indicated by the circle after being started at [10,10]. The chain 
then works progressively towards a region roughly centered at 2.5  on both axes. It 
clearly prefers to be in this area since it is near the high-density region of the bivariate 
density shared between α1 and α2. It is important to observe that the Markov chain 
has not yet converged to its stationary (permanent) distribution at this point. This is 
why it is important to “burn-in” the Markov chain in practice, meaning run the chain 
for some lengthy period and dispose of these iterations before beginning to record 
chain visits for inferential purposes. More discussion of burn-in and convergence is 
provided in Appendix B. In the second panel we show the last 100 iterations of the 
chain that is run for half  a million iterations. Since the panels are on the same scale it 
is easy to see that the latter part of the Markov chain is much more stable and much 
more concentrated. This is because the chain is now almost certainly in its stationary 
distribution. These recorded values are, therefore, reliable draws from the bivariate 
posterior of interest for inferential purposes. Notice also that the Markov chain only 
makes orthogonal moves (90-degree turns or straight moves). This is due to the sepa-
rate draws of the full conditional distributions in the Gibbs sampler: Draws are done 
one at a time through a mechanical iterative process that produces, in this example, α1, 
then α2, then α1 again, the α2 again, and so on.

Although this may sound quite involved from a programming perspective, there 
exists extremely high-quality free software that considerably lessens the burden on 
users. Both JAGS (“Just Another Gibbs Sampler”) and WinBUGS (“Windows Bayesian 
inference Using Gibbs Sampling”) allow the user to simply make modeling statements 
and then let the software convert these into the full conditional distributions needed 
for Gibbs sampling (the default engine for both). Furthermore, these packages will 
automatically switch to Metropolis–Hastings for any parameters where this Gibbs 
process is problematic.

Importantly, MCMC, either Gibbs sampling or the Metropolis–Hastings algo-
rithm, is actually more powerful than maximum likelihood; we just do not know it yet. 
It was actually about 40 years from Fishers’ important MLE papers until the full set 
of properties were described by Birnbaum (1962). The reasons are clear why MCMC 
is more powerful: it gives the same information as MLE (the mode and curvature 
around the mode), it gives full information about the posterior distribution so that 
quantities like quantiles and Bayes Factors can be determined, and the process can 
reveal information on the way (especially in Bayesian nonparametrics, see Gill and 
Casella 2009). We provide additional theoretical details on Bayesian stochastic simu-
lation in Appendix B and the exact code to run the empirical example in Appendix 
C.  Furthermore, there are estimation demands from models that are increasingly 
being used in public administration such as structural equations models to capture 
complex substantive relationships, measurement models for latent variables (e.g., 
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Item-Response Modeling), text analysis and mining with latent Dirichlet allocation, 
and others. Standard maximum likelihood estimation approaches either struggle to 
provide estimates or simply cannot provide estimates for these settings with realisti-
cally large and complex data due to high dimensionality, complex functional forms, or 
identifiability, whereas MCMC approaches work exceptionally well in such situations.

eMPIrIcAl exAMPle: contrActIng And Interest grouP Influence  
In stAte AgencIes

Here we consider an important question in public administration, describe a rele-
vant dataset, and then walk through the Bayesian modeling steps in a systematic, 
mechanical fashion, with the individual steps numbered for easy identification. Our 
stated objective is to provide an easy-to-adopt template for constructing and estimat-
ing Bayesian hierarchical models in the context of empirical public administration 
research.

We demonstrate the utility of the Bayesian approach by incorporating prior 
information from previous studies into an analysis of interest group influence in state 
administrative agencies using new data. How external political principals influence 
government agencies is a core public administration question motivating numerous 
studies (Kelleher and Yackee 2006; Meier and O’Toole 2006; Miller 1987; Miller and 
Wright 2009; Moe 1985; Potoski 1999; Waterman and Meier 1998; Waterman, Rouse 
and Wright 1998; Wood and Waterman 1991). In recent years, stories about “special 
interests,” from banks to oil companies and military contractors, using their political 
influence to undermine the ability of agencies to effectively implement policies have 
been a media staple. Yet compared to studies of how the elected branches of govern-
ment influence agencies, fewer analyses directly examine the influence of organized 
interests in the bureaucracy.

Few organized interests have a greater stake in bureaucratic deliberations than 
those entities that contract with agencies to provide goods or services (Witko 2011). 
“Contracting out” is often advocated on efficiency grounds, but Kelleher and Yackee 
(2009) argue that the relationships established during contracting processes may also 
increase the influence of organized interests over agency deliberations by ensuring 
that some organized interests—contractors—will have easy access to public managers. 
They find evidence for this using data from the 1998 and 2004 rounds of the American 
State Administrator’s Project (ASAP) survey.

If  contracting increases group influence this is problematic since the businesses 
that often contract with government are already over-represented in the bureaucracy 
(Reenock and Gerber 2008; Yackee 2006). Although the argument is intriguing, this 
potential negative aspect of contracting, like the interactions between organized inter-
ests and the bureaucracy more generally, has not been studied often.

Therefore we consider how contracting may shape interest group influence incor-
porating the results from Kelleher and Yackee’s (2009) study as prior distributions for 
a new round of the ASAP survey data from 2008 (they used 1998 and 2004 iterations 
of the survey). We also created prior distributions from the information in an impor-
tant study (Brudney and Hebert 1987) that used the 1978 round of ASAP data to 
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examine the influence of interest groups (and other external actors) in agencies, using 
an outcome variable very similar to that used by Kelleher and Yackee (2009). As we 
will show, the Bayesian approach allows us to easily and explicitly incorporate such 
information from previous studies into new models.

data description

ASAP data have been used to examine how external actors influence government agen-
cies (Brudney, Fernandez, Ryu, and Wright 2005; Brudney and Hebert 1987; Kelleher 
and Yackee 2006) and many other topics over the decades since it was first conducted 
in 1964 (e.g., Bowling and Wright 1998; Bowling, Jones, and Kelleher 2006).2 This 
study asks a large number of questions of hundreds of state administrators from each 
of the 50 states over many years and is, therefore, the most comprehensive survey of 
state administrators in existence. For the purposes of this illustration, we will not con-
sider the issue of common source bias. The ASAP survey asks administrators about 
the influence of a variety of external political actors including “clientele groups” in 
their agencies. Organized interest or interest group is a more contemporary term than 
“clientele group” but it is reasonable to use the terms interchangeably as previous 
studies have done (Brudney and Hebert 1987; Kelleher and Yackee 2009). Thus, fol-
lowing from Kelleher and Yackee (2006, 2009) and Brudney and Hebert (1987), our 
outcome variable of interest, grp.influence, is an index of the respondents’ (senior 
executives) perceptions of the influence that clientele groups have on the total agency 
budget, specialized program budgets, and agency policies. Each of these questions is 
a seven-point scale and they have been summed to create a single outcome variable 
(ranging from 3 to 21).

We include the same explanatory variables as Kelleher and Yackee’s (2009), with a 
couple of exceptions noted below. To measure the level of contracting performed by the 
respondent’s agency, we include the variable contracting, which is coded from zero to 
six, where increasing values indicate higher levels. Because more time spent with groups 
may increase their influence, we also control for whether the administrator in question 
spent more than the median amount of time with interest group representatives, med.
time, which is slightly different from Kelleher and Yackee’s (2009) who used a dummy 
variable indicating whether the amount of time spent with groups was above the average.3

In addition, we include a variable used in the Brudney and Hebert (1987) study 
which significantly shaped group influence, the method of appointment of the agency 
head. Brudney and Hebert (1987) found that elected officials or those appointed by a 
board or commission were most likely to be influenced by interest groups. This reflects 
that these groups play an important role in elections and can wield significant influ-
ence in the selection processes of relatively obscure boards and commissions, because 
a lack of visibility generally enhances interest group influence (Witko 2006). Therefore 
we control for whether the respondent is an elected official or appointed by a board 
or commission, rather than a merit employee or appointed by the legislature and/or 

2  For a more thorough list of publications through the mid-2000s, see http://www.auburn.edu/outreach/cgs/
documents/(091007)ASAPinventoryofpublicationsandpapers.pdf.
3  In the 2008 data, very few groups spent above the average amount of time; so we use the median.
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executive (elect.board, 1 if  so, 0 otherwise). Using this variable contrasts with 
Kelleher and Yackee (2009) who controlled for whether the agency head was a civil 
servant (which was not a significant predictor of group influence). Following from 
Kelleher and Yackee (2009), we include the multiplicative interaction between time 
and contracting medt.contr, which is anticipated to increase group influence.

It is also necessary to control for several factors that may enhance or limit interest 
group influence. We followed Kelleher and Yackee (2009) in selecting these controls. 
First, since elected political principals may condition interest group influence by impos-
ing their own will on the bureaucracy, we include two control variables asking about the 
influence of the governor and legislature constructed in the same manner as the interest 
group influence outcome variable, gov.influence (3 to 21) and leg.influence (3 
to 21). We also include individual-level administrator variables for the number of years 
in the current position (years.tenure from 0.25 to 40), level of education (educa-
tion from 1 to 5, indicating high school, some college, bachelors degree, graduate 
study, and graduate degree), and partisan identification (party.ID 0 to 5, moving 
from strong Democrat to strong Republican). Next we include a set of 11 dichoto-
mous explanatory variables that control for the type of agency using Deil Wright’s 13 
functional categories (thus adding a net of 10 columns to the X matrix). There are 11 
dummy variables because we omit one category (“other”— i.e., agencies that do not fit 
in one of the standard categories) as the reference group and we also omit the category 
for agencies headed by elected officials since this is perfectly determined by our variable 
of theoretical interest elect.board derived from the Brudney and Hebert (1987) 
study. The actual definitions of the 11 agency types are transformed into distinguish-
able but unlabeled categories to protect the respondents’ anonymity as a condition of 
the use of the data. This is slightly inconvenient but important because it would other-
wise be possible, although very difficult, to reconstruct personal identities from the data 
plus other publicly available references. Furthermore, we also exclude gender from this 
analysis since the low number of females makes that group vulnerable to discovery, and 
we add N (0,1 / 3) random noise to years.tenure to obfuscate this variable without 
adding bias. Such data manipulation processes have a long history in public administra-
tion and is one of the only ways to get public figures to answer sensitive political ques-
tions in an honest and forthright manner (Mackenzie and Light 1987).

As in Kelleher and Yackee (2009), at the state level of the hierarchical model 
(described below) we specify three explanatory variables. First, gov.ideology is 
an omnibus measurement of the state-level government ideology (Berry, Ringquist, 
Fording, and Hanson's, 1998, updated measure). The volume of organizations seeking 
to influence government may matter, so we include lobbying (ranging from 191 to 
2126), which is the total lobbying registrants in 2000–1 from Gray and Lowery (1996, 
2001). Finally, we use the variable nonprofits to count a balancing force: the number 
of nonprofit organizations registered in the state as of 2008 (originally ranging from 
4,537 to 156,682 and therefore scaled by 10,000) from the National Center for Charitable 
Statistics. Notice that these definitions at the state level (“group level” in multilevel mod-
eling language) make them inappropriate for assignment to the individual administrators 
answering the survey since these people are nested in states with other public managers, 
not state-defining units themselves. Ignoring such aggregation in the data with a “fully 
pooled” or flat model that does not incorporate this hierarchy leads to incorrect model 
results, such as inappropriately small coefficient standard errors (Gelman and Hill 2007).
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One departure from the Kelleher and Yackee (2009) model was that we did not 
include a variable measuring the influence of professional associations over the agency 
as a control in the model, because we think that professional associations could also 
be viewed as a type of group seeking to influence the agency (either where they repre-
sent employees working in agencies, or are even regulated by agencies in some cases), 
and the two are indeed relatively highly correlated in our data (r = 0.61). We did not 
think it was proper to incorporate professional association influence into the outcome 
variable, however, because professional associations rarely contract with the state gov-
ernment. In addition, since we used one round of data in our analysis we do not 
include a dummy variable for the different rounds of data.

Our version of the raw 2008 ASAP data with 713 observations had 933 missing 
values within some variables, giving 2.75% total missingness (933 divided by 713 obser-
vations times 47 variables). Footnote 12 in the original article suggests that Kelleher 
and Yackee (2009, 595) case-wise deleted full observations with missing values in the 
1998 and 2004 ASAP dataset before running their regression models. Since this prac-
tice typically leads to biased model specifications (Little and Rubin 1983, 2002; Rubin 
1987), we imputed the missing values with the mice multiple imputation package in 
R and the tools for discrete missing values given in Cranmer and Gill (2013). This 
process gives us a set of 10 fully filled-in datasets (of size 713 observations times 47 
variables) that require replicated modeling and averaging of inferential results (there 
is a slightly more involved process for combining the standard errors). See the review 
essay by Rubin (1996) or the text by Schafer (1997) for details. It is also possible to 
draw values of these missing data during the iterative Gibbs sampling process, but 
pre-estimation multiple imputation is often easier when using the packages JAGS and 
WinBUGS. These packages treat NA symbols in data statements as missing values, and 
in some situations can estimate them in the same way as parameters in the model 
estimation process since everything unknown to a Bayesian is treated distributionally, 
although both packages are restrictive in their implementations.

Model development

This section outlines the model specification process. Here we build and estimate a 
Bayesian version of the specification in Kelleher and Yackee (2009) with the noted 
enhancements designed to reveal more information about the data generating process. 
In addition, we provide the detailed data handling and estimation code for processing 
this model in JAGS. The program WinBUGS is very similar but we focus on JAGS since 
there is evidence that it is a better MCMC engine, and it runs on all common operat-
ing systems. There are two primary ways to run JAGS: natively in terminal window 
where the results are imported into R, and within R using the rjags package. We will 
describe both approaches.

Step 1: Data Objects
Specify a 713 20×  matrix X (without a leading column of 1’s) for individual-level 
explanatory variables, and a 50 3×  matrix Z for state-level explanatory variables with-
out a leading column of 1’s. The contents of these matrices were described in the pre-
vious section. Our Y  outcome variable (grp.influence) measures the respondents’ 
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perception of interest groups’ influence on total budget, special budgets, and general 
public policies. For modeling purposes it is important to keep these two covariate 
matrices distinct. All three data structures (the two matrices and the outcome variable 
vector) are kept in the same JAGS data file where each variable is defined consecutive 
in the R list format. For example:

STATES <- 50
SUBJECTS <- 713
state.id <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
contracting <- c(6, 2, 0, 0, 0, 1, 0, 3, 3, 6, 0, 1, 5, 1, 1, 1, 0, 3, 3, 2,...
gov.influence <- c(19, 13, 11, 21, 17, 19, 15, 14, 19, 17, 13, 15, 6, 19, 13,..
:
nonprofits <-
c(1.9783, 0.509, 2.0701, 1.3639, 15.6682, 2.7968, 2.0128, 0.5585,
7.0653, 3.671, 0.746, 0.7508, 6.6459, 3.61, 2.8795, 1.8049, 1.8861,
1.9391, 0.9202, 3.1633, 3.6798, 4.8333, 3.3067, 1.228, 3.6469,  
0.9728, 1.2989, 0.7732, 0.784, 4.2042, 1.0284, 9.8503, 4.2169, 
0.5832, 6.4636, 1.9164, 2.1932, 6.6298, 0.7195, 2.1484, 0.6801,
2.9545, 9.9194, 0.8706, 0.5967, 3.9635, 3.5073, 1.1225, 3.4171,
0.4537)

This dataset (as well as all of the code) is available at http://dvn.iq.harvard.edu/
dvn/dv/jgill, and the code for bringing these data into the R environment for use by 
rjags is given in Appendix C. Note here that we have embedded the data size con-
stants in the data file. This is much better programming practice than burying these 
definitions in the actual JAGS code since it makes them more explicit and does not 
lead to confusion when the code is applied to other data. The variable state.id is 
used to assign individual cases to the groups they are nested within. This is the essen-
tial mapping from the administrator to his/her state of employment. The long series 
of 1’s above indicates that the first set of respondents is all in state 1. Each of the Z  
variables has this characteristic: many repeated values indicating sharing of the state 
assignment, which defines the hierarchy in the data. Notice that the partial listing of 
the data above finishes with the last group-level variable of length 50.

Step 2: Statistical Specification
We relate these variables through the linear multilevel model:

 Y N ii j i i y ( , ), =1, ,713[ ]
2α β σ+ X for …

 α γ σαj N j ( , ), =1, ,502Z for … ,  (9)

The first line states that the outcome variable for the ith individual case is distrib-
uted normal around a mean-defining systematic component, α βj i i[ ] + X ,  with variance 
σ y

2 . This is exactly the linear model based on the standard Gauss–Markov assump-
tions except that a distributional feature is assumed, giving the Bayesian context. The 
matrix X  is defined above and β  will be the corresponding estimated regression coef-
ficients. Using hierarchical notation from Gelman and Hill (2007) to indicate that 
the ith respondent is nested in the jth state, α j i[ ] , we specify a state-specific random 
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intercept. Therefore there will be j =1, ,50…  “intercepts” in the model, each one cor-
responding to a US state in the data, and denoted at the group level as α j. The second 
stage of the Bayesian hierarchical model is to specify a distributional structure for 
these random effects. This is an assumed distribution from which each of the α j is 
drawn. Thus the US states share a common feature, a normal distribution specified in 
the second line of equation (9), but are represented in intercept terms by distinct draws 
from this distribution. The power of this model comes from the ability to add vari-
able definitions at this second level in the hierarchy, and here we parameterize at the 
second level the three explanatory variables in Z  and their corresponding estimated 
coefficients, γ .

It is very important to note the two different variances accounted for in equation 
(9). The term σ y

2  measures the within-state variance of the outcome variables (which 
is assumed to be the same across individuals in different states), whereas the term σα

2  
gives the variance of the mean estimates between states. The first variance term func-
tions as the regular variance of the regression and serves as a reference point. The sec-
ond term measures differences between states and therefore gives the value of having 
a multilevel specification defined by state membership. Surprisingly, this is a variance 
term we would like to be large relative to σ y

2 , since it “soaks up” variability that would 
normally fall to the error term in the model.

There are two basic blocks of code that users specify in a JAGS or WinBUGS 
program: looping through data and parameters applying the link function to relate 
to the outcome variable, and specifying priors. The first is analogous to specifying a 
likelihood function, and the second gives distributional assumptions for the unknown 
parameters. Interestingly, within these blocks the order of individual statements is not 
important, and the order of the blocks is also not important. This is quite different 
than programming in R, FORTRAN, C, or some other standard serially specified 
programming language. In the JAGS code we get the specification in equation (9) by 
first looping through the individual-level variables in X with:

for (i in 1:SUBJECTS) {
mu[i] <- alpha[state.id[i]]
+ beta[1]*contracting[i] + beta[2]*gov.influence[i] + beta[3]*leg.influence[i]
+ beta[4]*elect.board[i] + beta[5]*years.tenure[i] + beta[6]*education[i]
+ beta[7]*party.ID[i] + beta[8]*category2[i] + beta[9]*category3[i]
+ beta[10]*category4[i] + beta[11]*category5[i] + beta[12]*category6[i]
+ beta[13]*category7[i] + beta[14]*category8[i] + beta[15]*category9[i]
+ beta[16]*category10[i] + beta[17]*category11[i] + beta[18]*category12[i] 
+ beta[19]*med.time[i] + beta[20]*medt.contr[i]

grp.influence[i] ~ dnorm(mu[i],tau.y)
}

This loop associates each data value with its corresponding coefficient estimates, 
looping through each individual case. The random-effects specification, α j i[ ], is given 
in the statement alpha[state.id[i]], where the state.id variable maps the 
i  individuals to their corresponding state (group), and this is embedded in the alpha 
vector which is of length 50. Notice that these terms are additively collected in the 
placeholder mu[i] for the ith individual. The last line in the loop specifies that the 
outcome variable for the ith case is distributed normal around this individual-level 
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mean with precision (1/variance) tau.y. Because this last term is not indexed, it cor-
responds to all cases in the data, thus giving an estimate of 1 / 2σ y .

Since we want to also give the group-level effects with explanatory variable matrix 
Z, the next part of the code loops through the groups:

for (j in 1:STATES) {
eta[j] <- gamma[1]*gov.ideology[j] + gamma[2]*lobbyists[j]

 + gamma[3]*nonprofits[j]
alpha[j] ~ dnorm(eta[j],tau.alpha)

}

Here we collect the linear additive components for Zγ  in the placeholder eta[j] 
in the first line within the loop. The second line states that the random effect for state 
j  is distributed normal around this state-level mean, eta[j], with precision (1/
variance) tau.alpha. Because the “connector variable” of alpha[], JAGS under-
stands how to relate the individual-level model to the group-level model, achieving the 
multilevel nesting of individuals into states as specified in equation (9).

Step 3: Prior Definitions
For convenience and model flexibility, we restrict our distributional choice for priors 
to normal forms. This provides a “conjugate” specification throughout, meaning that 
the distributional form of the prior flows through to the posterior, albeit with different 
parameterizations. Conjugacy is a joint property of the prior distribution and the like-
lihood function such that distributional family of the prior is the same as the posterior 
with parameters that differ from the information in the likelihood function, where 
the extent of this change is called “shrinkage.”4 In the linear model with reasonable 
data size, normal priors produce normal posteriors. This is supported by the standard 
regression theory for n =713 and the increased numerical stability that is provided by 
this choice. The set of priors for the individual-level and the group-level coefficients 
are summarized by:

 β β βN ky( , )Σ

 γ γ γN ky( , ),Σ  (10)

where the Σβ  and Σγ  matrices are diagonal forms with large variances relative to the 
Kelleher and Yackee’s (2009) point estimates. It is possible to specify off-diagonal 
entries for these matrices, if  important correlational information exists before the data 
analysis, but we saw no reason to add this feature. Such prior information would come 
from theories about relationships between the coefficients that might exist in the lit-
erature under study.

We choose to use informed versions of the prior distributions for some of the 
unknown parameters since a high-quality source exists for these. Our prior distribu-
tions in these cases are diffuse normals centered at the point estimates from Kelleher 

4  For instance, a beta distribution prior for an unknown probability parameter plus a likelihood function 
from a binomial assumption gives a different beta distribution for the posterior of this parameter. The normal 
distribution is conjugate to itself, as shown in the application here.
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and Yackee’s (2009, 593) Model 3. We deviate from their values in two important ways: 
We substitute the variable elect.board for their variable Merit Position, and 
since we are using 2008 data only there cannot be a dummy variable for the year 2004 
versus 1998. The remaining variables where prior information is low are assigned nor-
mal distributions with mean zero and large variance relative to their non-Bayesian 
model standard errors in previous research. These priors are specified in the JAGS 
code with the sample statements:

beta[1] ~ dnorm(0.070,1) # PRIOR MEANS FROM KELLEHER AND YACKEE 2009, MODEL 3
beta[2] ~ dnorm(-0.054,1)
:
beta[9] ~ dnorm(0.0,1) # DIFFUSE PRIORS
beta[10] ~ dnorm(0.0,1)
:

(the full set of priors is specified in Appendix C). In some cases we could have looped 
through distributional assignments for these coefficients that are the same, but since 
our focus was on thinking carefully about the inclusion of substantive prior informa-
tion from the literature, we thought it made sense to individualize these decisions on 
separate lines of code above. In Appendix C we show the complete JAGS model speci-
fication combining the model statements in the previous paragraphs with the prior 
statements just above.

estIMAtIon And results

We now turn to producing marginal posterior distributions for each of the coeffi-
cients of interest using Gibbs sampling as implemented in JAGS. The power of using 
this software is that we do not have to specify each of the full conditional distribu-
tions discussed in the previous section. Instead we have the luxury of making software 
statements, as just described immediately above, that resemble the model statements 
in equation (9). The joint posterior distribution before commencing this process is a 
combination of the linear hierarchical likelihood function and the priors, as described 
in a previous section, given by:

 π β γ α β γ α β γ α σ σα( , , | , , ) ( , , | , , ) ( ) ( ) ( ) ( ) ( ).2 2X Z Y X Z Y∝L p p p p py  (11)

This is a 76-dimensional distributional form (20 individual-level coefficients, 3 
group-level coefficients, 50 random effects, 2 variances components, and the resulting 
posterior density), so the analytical process of producing marginal summaries for a 
regression would be to integrate across 75 dimensions (minus density). Obviously this 
is impractical, and it is the MCMC process described in the previous section that saves 
us from attempting this task with calculus tools.

Step 4: Running the Sampler
It is essential to start a Markov chain from some point in the multidimensional space 
so that it may begin its run. Such a point is theoretically unimportant (Gill 2008, chap-
ter 11) but practically important for one of the standard convergence diagnostics. The 
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JAGS program when run in terminal model by itself  requires that starting values be 
given in the R vector format, one specification to a line. We ran three parallel chains 
for each of the 10 imputed datasets where the three chains in each case started from 
different points. For example, one starting point file contained:

tau.y <- 10
tau.alpha <- 10
alpha <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
beta <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
gamma <- c(1,1,1)

The order of the variables listed does not matter, but each estimated coefficient 
must have a starting point for MCMC estimation iterations. Appendix C shows how 
to keep all of these definitions in the R environment rather than specifying files for 
JAGS run separately.

Using JAGS we ran the Gibbs sampler for 500,000 iterations, keeping only the last 
half  of the run, and therefore using the first half  of the run for burn-in. The mechani-
cal details of calling JAGS from the R environment are summarized in Appendix C 
along with Web site support so that interested readers can reproduce our results imme-
diately. Using the second half  of the run, we then ran the diagnostic suite provided by 
the R package superdiag (Gill and Tsai 2012), which calls all of the conventional 
convergence diagnostics used in typical MCMC output assessment. This provided no 
evidence of nonconvergence, giving us confidence that the empirical summary from 
the path of the last 250,000 iterations converged to the stationary distribution, and 
thus sufficiently explains the marginal posterior distributions of the parameters of 
interest. In addition, traceplots that map the traveled path of some critical param-
eters are given in figure 3 for the last 50,000 iterations along with corresponding his-
tograms. These patterns are typical of all of the marginal results achieved. Notice 
the stable mean structure in the figure, looking horizontally, for each. In a few cases 
(gov.ideology, lobbyists, nonprofits), there is a little bit of “snaking,” indi-
cating a slower mixing through the sample space than the others. This does not alter 
our results inferentially; it simply means that we want to make sure that these marginal 
dimensions are adequately explored by running the Markov chain long enough. All 
of the formal diagnostics in superdiag point towards convergence and extensive 
exploration of the posterior space.

Step 5: Summarizing Marginal Posteriors
The coefficient summaries provided in table 1 are the estimated marginal posterior 
means, standard errors, and 95% credible intervals for the coefficients of the model. 
These were produced by summarizing the marginal draws from the last 250,000 itera-
tions of the Gibbs sampler, which was done 10 times corresponding to 10 replicate 
datasets from the multiple imputation process. Bayesian results are often given in 
probability statements and graphical depictions (see below), but most social science 
readers still expect to see something that closely resembles a standard regression table. 
It is important to recall that posterior means, as given here, are not the same esti-
mates as the mode of a likelihood function. However, in applications with only mildly 
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informative priors and large samples, the difference will be negligible. Furthermore, 
the same distinction exists between the posterior standard error and the error that 
results from the square root of the diagonal of the negative inverse Hessian matrix. 
So table 1 can be read and understood in exactly the same substantive way as a table 
derived from maximum likelihood estimation, except in cases where the prior is influ-
ential and the sample size is small. In this latter case, the assumptions will play an 
important role and need to be extensively justified.

The JAGS output is a set of marginal posteriors. In R we can simply summarize 
these empirical draws as if  they were data to produce the values in table 1. This is 
done by:

start <- nrow(full.out1)/2; stop <- nrow(full.out1)
asap.out <- cbind(

apply(full.out1[start:stop,],2,mean), 
apply(full.out1[start:stop,],2,sd), 
apply(full.out1[start:stop,],2,mean)-1.96*apply(full.
out1[start:stop,],2,sd), 
apply(full.out1[start:stop,],2,mean)+1.96*apply(full.
out1[start:stop,],2,sd))

figure 3
Traceplots of Sample Draws for Selected Parameters

D
ow

nloaded from
 https://academ

ic.oup.com
/jpart/article/23/2/457/1003493 by guest on 24 April 2024



Gill and Witko Bayesian Analytical Methods 481

where full.out1 is one of our 10 replicated results due to the multiple imputation 
process. This setup assumes that JAGS was run in terminal mode and the samples 
loaded into R with read.coda. Notice that all we are doing here is calculating and 
manipulating means and standard deviations for last half  of the rows of the data 
matrix that contains the MCMC simulations. Some prefer to obtain such tabular 
results from the MCMC analysis suites in R: coda and boa, which are menu-driven 
and quite simple to use. The key point here is that once the Gibbs sampler is done and 
we have confidence that it has converged and fully explored the sample space, the rest 
of the analysis is as easy as a standard data summary. This is one very nice feature of 
working with MCMC results.

One final note about reporting results is important here. Notice from table 1 that 
we did not report the marginal posterior summary for 50 α  coefficient values corre-
sponding to the 50 estimated random effects for the US states. Obviously this would 
have made the table much larger and perhaps more cumbersome. Many authors, 
therefore, choose to summarize them graphically or provide and discuss important 
cases from amongst the groups. In our case we only showed the Markov chain path 
for α1 and α2 in figure 2, although it would have been straightforward to present more 
information about all of the estimated random effects. The mean of these effects is 

table 1
Posterior Summary: Bayesian Hierarchical Model, State Lobbying 

Parameters Mean Std. Error 95% Lower CI 95% Upper CI

α  mean(1:50) 1.3905 0.7037 0.0112 2.7698
contracting 0.1987 0.0963 0.0099 0.3874
gov.influence 0.0481 0.0367 −0.0239 0.1202
leg.influence 0.3519 0.0397 0.2741 0.4297
elect.board 1.3436 0.3546 0.6486 2.0386
years.tenure 0.0347 0.0233 −0.0110 0.0804
education 0.1249 0.1217 −0.1136 0.3634
party.ID −0.0046 0.0845 −0.1703 0.1611
category2 −0.4282 0.5423 −1.4912 0.6348
category3 −0.0596 0.5885 −1.2131 1.0938
category4 1.5501 0.4571 0.6541 2.4461
category5 −0.5473 0.5010 −1.5292 0.4347
category6 0.9227 0.5395 −0.1348 1.9801
category7 1.7014 0.4353 0.8482 2.5546
category8 1.0013 0.4986 0.0240 1.9785
category9 0.9412 0.4860 −0.0115 1.8938
category10 0.6157 0.4634 −0.2925 1.5239
category11 −0.1264 0.4265 −0.9624 0.7096
category12 −0.1592 0.5727 −1.2816 0.9632
med.time 1.1435 0.3587 0.4405 1.8465
medt.contr −0.0869 0.1372 −0.3559 0.1821
gov.ideology 0.0182 0.0062 0.0060 0.0303
lobbyists 0.0007 0.0008 −0.0007 0.0022
nonprofits −0.0217 0.1267 −0.2701 0.2266
τ y

0.0763 0.0042 0.0682 0.0845

τ α 3.1021 1.3523 0.4517 5.7525
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1.3905, which shows a positive effect on the outcome variable even for zero levels at 
all of the explanatory variables and at the reference level (“other”) of agency category.

Step 6: Assessing Model Fit
Model fit statistics flow naturally from the MCMC output. First we can compare devi-
ance from the fit model to the null (intercept only) model in exactly the same fashion 
as regular generalized linear model analysis. The summed deviance function comes 
from comparing the predicted value of the outcome value to actual value, which is just 
a residuals analysis with linear models. We get this easily from the JAGS or WinBUGS 
output by setting a monitor to accumulate the deviance at each step of the Markov 
chain (monitor set deviance in the JAGS terminal window) and then simply 
taking the mean across iterations. As a reminder, the model deviance is compared to 
the saturated model deviance of zero and the null model deviance, where differences 
are asymptotically distributed χ2 with degrees of freedom equal to the difference in 
the number of parameters. So for our model, we see the results in table 2 where the 
χ2  difference between models produces right-hand-side tail values that are essentially 
zero, indicating evidence that the estimation differs from both the null model and the 
saturated model. This indicates that our model is statistically distinct from both the 
null model and the saturated model, meaning that we have substantial progress away 
from the simplest modeling approach but we still have unexplained variance relative 
to a fully saturated specification. 

The standard errors from the τ  values ( )1/τ  in table  1 are σ y =3.6202 and 
σα = 0.5677, which defends the use of a hierarchical model since there is an appreci-
able amount of model variability soaked up in the between-state specification that 
would have otherwise defaulted to regression standard error in a nonhierarchical spec-
ification. Normally we would like to see a larger value of σα  relative to σ y, perhaps 
even substantially greater, but being a similar order of magnitude easily justifies the 
multilevel definition (see the further practical guidance in Gelman and Hill 2007).

We also want to compare our model to the straw-man specification of the null 
model in terms of the DIC given in equation (8). Recall that this is a Bayesian analog 
to the AIC that accounts for the varying roles that parameters play in a hierarchical 
model. The DIC value for our model is obtained by rerunning the simulations record-
ing the D  and pD  values, according to the following command in R (terminal-run 
JAGS just inserts an additional model command),

asap.dic <- dic.samples(asap2.model, n.iter=250000, type=“pD”)

which reports DIC D pD= =3861 34.04 3895+ + ≈ . This process is repeated for the 
null model (one devoid of explanatory variables other than the random effect α, but 

table 2
Deviance Analysis, c2 Statistics 

Model Deviance Difference df Tail Value

Null 3963.8 103.7 24 6.9787e-12
Estimated 3861.1
Saturated 0.0 3861.1 689 <1.0e-300
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using the exact same data). The same dic samples command on this smaller model 
produces D =3964 and pD = 49.26. The null model DIC is the rounded up sum of 
these two values: 4014. From this we obviously prefer the fully specified model since 
it has lower DIC (3895 versus 4014). In more general circumstances, we might be 
comparing different mixes of covariates in the specification, and the DIC would be 
a useful guide to relative model quality between these specifications. In this example 
our strong theoretical focus on extending the Kelleher and Yackee (2009) model led us 
to a single well-defined model specification, with only a DIC comparison to the null 
concerning us.

It is also possible to produce very interesting and useful visualizations of the mar-
ginal posterior distributions and their implications. For instance, we can generate pos-
terior predictive distributions of  the data from the fitted model and compare these to 
the observed data (Gelman and Hill 2007, chapter 24; Gill 2008, chapter 6). Graphing 
the marginal posteriors and showing interesting features, including cut-points and dis-
persion, can also reveal important substantive conclusions that would complement 
the results in table 1.

discussion of findings

Our findings using the 2008 data and the priors from the earlier analyses provide 
largely consistent results regarding interest group influence in state agencies. First, for 
the core concern of Kelleher and Yackee’s (2009) article, we also observe that more 
contracting is positively related to perceptions of interest group influence, and that 
this finding is statistically reliable, having a credible interval of [0.0099 : 0.3874]. We 
also find clear evidence that those agency heads who spent above the median amount 
of time with organized interests perceived groups to have more influence over their 
agencies (a posterior mean of 1.1435), which differs from Kelleher and Yackee’s (2009) 
results but is consistent with their earlier work where they found that time spent with 
interest groups was an important predictor of their perceived influence using a con-
tinuous measure of time (Kelleher and Yackee 2006). In contrast with Kelleher and 
Yackee’s (2009) findings, we do not find strong evidence that the interaction between 
time and contracting is a reliable predictor of perceived interest group influence. The 
posterior mean point estimate for this variable is actually negative (−0.0869), and the 
posterior variance is sufficiently large (0.1372) that we do not consider this to be a reli-
able find: 41% of the posterior density is below zero and 59% of the posterior density 
is above zero, under a normal assumption (an assumption justified by both the data 
size and the MCMC estimation process).

Several of the other results are also quite interesting from a substantive stand-
point. First, consistent with Brudney and Hebert (1987), we find that agency heads 
who were elected or appointed by boards or commissions perceive interest group 
influence to be much greater, and this coefficient is reliable: The posterior distribution 
95% credible interval is [0.6486 : 2.0386]. This likely indicates that the more impor-
tant the role that interest groups play in these selection processes, the more influ-
ence over administrators occurs once they are selected. One of the more interesting 
findings is that a legislature perceived to be more influential is associated with more 
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powerful clientele groups: The posterior distribution 95% credible interval in table 1 
is [ . : . ]0 2741 0 4297 , which mirrors Kelleher and Yackee’s (2009) findings. This almost 
certainly reflects the idea that legislators intervene in the bureaucracy on behalf  of 
organized interests, or administrators consider the preferences of legislatures’ inter-
est group allies when making decisions, leading to complimentary interest group and 
legislative influence (Witko 2011). We also observe that more time in the current posi-
tion is associated with the perception of greater interest group influence, but this coef-
ficient is not as reliable as we would like: The posterior mean of 0.0347 and posterior 
standard deviation of 0.0233 imply that 7% of the posterior density is below zero 
under a normal assumption. This is a classic example where the Bayesian approach 
provides a more flexible reporting mechanism. In standard statistical analysis with 
the typical threshold of α = 0.05  (two-tailed as is the custom with regression results), 
we would be forced to dismiss this effect. With the Bayesian way of thinking, there 
is a 93% chance (.93 probability) that job tenure is positively associated with greater 
interest group influence. Notice that it is now entirely left to the reader to determine 
whether this is sufficient evidence to convince them, rather than force adherence to a 
completely arbitrary threshold. We also find evidence (a posterior credible interval of 
[0.0060 : 0.0303] ) that in states with more liberal governments agency heads tend to 
perceive interest groups as having more power. It is not obvious why this is the case, 
and this finding suggests a direction for future research.

Kelleher and Yackee’s (2009) argument regarding contracting and interest group 
influence was intriguing but had received little empirical attention. Using a new round 
of data and incorporating the information from their study, we find that more con-
tracting is associated with more perceived interest group influence over agency policies 
and budgets. Based on our analysis we can also make some broader statements about 
the influence of interest groups in administrative processes. Because the contracting 
relationships and spending more than the typical amount of time with interest group 
leaders is associated with more perceived influence, we can conclude that direct access 
enables interest group influence over the decision making of public managers, prob-
ably in much the same manner that legislators are influenced by interest groups. Thus, 
our findings further highlight some of the potential downsides of decentralized gov-
ernance networks that involve close collaborative relationships between public man-
agers and representatives of external groups (Kelleher and Yackee 2009; O’Toole and 
Meier 2006; Whitford 2002; Witko 2011). However, our finding that more legislative 
power is also associated with greater perceived interest group influence indicates that, 
whatever the other benefits of increased centralization (Whitford 2002), more centrali-
zation would perhaps not limit interest group influence over agencies because groups 
can mobilize central political principals to pressure agencies on their behalf  (Stigler 
1971). A major task of future research is to determine how different levels of decen-
tralization and centralization may condition group influence in the bureaucracy.

One major benefit of the Bayesian approach to explore these types of questions 
going forward is that there is a clear process for explicitly incorporating the informa-
tion from other studies. It does not make sense to conclude that previous findings are 
somehow “wrong” based on one additional study. Instead we should use the existing 
evidence and our new data to update our understanding of a phenomenon. After 
doing this here, there does appear to be a relationship between contracting and group 
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influence. Future studies of federal, local, or state governments using different data 
sources should directly incorporate the findings of these previous studies into their 
analyses of new data.

conclusIon

The Bayesian process of data analysis is characterized by three primary attributes: 
a willingness to assign prior distributions to unknown parameters, the use of Bayes’ 
rule to obtain a posterior distribution for unknown parameters and missing data con-
ditioned on observable data, and the description of inferences in probabilistic terms. 
The core philosophical foundation of Bayesian inference is the consideration of 
both observables and parameters as random quantities. A primary advantage of this 
approach is that there is no restriction to building complex models with multiple levels 
and many unknown parameters. Because model assumptions are much more overt in 
the Bayesian setup, readers can more accurately assess model quality.

Bayesian statistical models cannot be developed in a “cookbook” fashion, look-
ing up the recipe steps and blindly following the instructions, such as the statistical 
testing recipes that are on the inside cover of some basic texts. Instead, each step of  
the process, from determining the form of prior distributions and likelihood function 
through estimation and description of results, needs to be done in a thoughtful and 
deliberate way so that the decisions are clear to readers and the results have integ-
rity. We provided the “steps” here not as confining mechanism but as a convenient 
reminder of the process. Bayesians carefully follow this process for historical reasons 
since there was about 100 years of hostility from others, leading to a defensiveness 
whose manifestation was the detailed justification of every model assumption. It turns 
out that this is a prescription for all developers of statistical models, and the routi-
nization of model building harms many disciplines including public administration. 
We feel that injecting a Bayesian inferential culture into empirical research in public 
administration moves us to a better scientific process of discovery and away from 
lockstep procedures followed by convention, as routinely done in closely aligned dis-
ciplines such as the study of business administration.

Social scientists have increasingly embraced Bayesian methods as useful ways to 
address empirical and methodological problems. Over the last two decades, any sense 
of controversy has receded from the field of statistics, with plenty of evidence in top 
statistics journals. Now with a wide range of freely available MCMC tools, estimation 
challenges are fairly easily managed, even under seemingly difficult circumstances. 
This leads to a world where public administration scholars have few impediments to 
developing useful and principled Bayesian models for their empirical questions. We 
demonstrated the utility of this approach here, with an important substantive applica-
tion that sheds light on a broad question in public administration.

We have no illusion that public administration scholars are going to transform 
into research statisticians. Nor do we believe that they should. Our colleagues justifi-
ably care about theories of government and administration, providing evidence to 
support these through collected data and placing their conclusions into our rich litera-
ture. The statistical modeling part of this process should not be viewed as an annoying 
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encumbrance, but should instead be considered an opportunity for creative explora-
tion. The discipline subsumes this fertile inquiry by locking the empirical process into 
old practices that slow growth in the field.

Bayesian methods are not a panacea for all quantitative work. It is still possible to 
construct flawed Bayesian specifications just as it is possible to construct flawed non-
Bayesian specifications. The researcher still needs to carefully consider the structure of 
the statistical model with regard to data measurement, parameter relationships, and 
descriptions of uncertainty. Still, the Bayesian paradigm provides a more principled 
approach to describing uncertainty from data and models. As Ed George observed, 
“All good procedures are Bayesian, but not all Bayesian procedures are good” (per-
sonal communication). We believe that the science of public administration can be 
improved by the more appropriate view of probability and uncertainty contained in 
the Bayesian paradigm.

APPendIx A. data description

This section summarizes the data format and coding decisions applied to the final 
subset of the 2008 ASAP data. Missing data (2.75% here from our original version 
of the 2008 data with 47 variables) were imputed with the mice package in R that 
uses multiple imputation. Ten replicate datasets were created, each of which is fully 
complete after the process. Each of the 10 replicate datasets were subsetted from 47 
original variables down to the 13 explanatory variables and 1 outcome variable used 
in the model. As described above, this became a 713 20×  indvidual-lavel explanatory 
variable matrix X due to the treatment contrast for category_[], and a 50 3×  group-
level explanatory matrix Z. We then ran the Gibbs sampler on each replicate and 
averaged the posterior means to create a regression table. The posterior standard 
errors are a weighted average of between- and within-replication uncertainty (Rubin 
1987). The subsetted dataset (14 variables) and a larger version of the dataset (47 vari-
ables) are available for replication purposes at the authors’ dataverse page: http://dvn.
iq.harvard.edu/dvn/dv/jgill. Several of the 47 variables are embargoed for confidenti-
ality purposes at the request of the original collector of the data, although not any of 
the variables used here.

 1. grp.influence is a scale from 3:21 created from adding three seven-point scales: 
respondents’ perceptions of the influence that clientele groups have on the total 
agency budget, specialized program budgets, and agency policies. The observed 
 distribution of these outcomes is 3(38), 4(19), 5(33), 6(60), 7(37), 8(66), 9(57), 
10(72), 11(64), 12(72), 13(53), 14(39), 15(43), 16(23), 17(13), 18(14), 19(7), 20(2), 
21(1) denoting code(count).

 2. contracting is a scale from 0:6 with observed distribution [263, 142, 112, 60, 37, 
27, 72]. Higher levels on this scale indicate more private contracting within the 
respondent’s agency.

 3. gov.influence is the respondents’ assessment of the governor’s influence on con-
tracting in his/her agency. This variable ranges from 0:21 with observed distribu-
tion [4, 1, 2, 14, 19, 13, 18, 12, 18, 29, 40, 31, 41, 72, 65, 102, 77, 44, 111].
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 4.  leg.influence is the respondents’ assessment of the legislatures’ influence on con-
tracting in his/her agency, ranging from 0:21 with observed distribution [2, 1, 3, 4, 
4, 15, 10, 16, 25, 22, 44, 51, 64, 60, 82, 112, 70, 47, 81].

 5.  elect.board is a dichotomous variable coded 1 if  appointed by a board, a com-
mission or elected, and 0 otherwise. The distribution seen with this sample is 
[577, 129].

 6.  years.tenure gives the number of years that the respondent has worked at their cur-
rent agency. The observed mean is 5.6752 with standard deviation 5.6845.

 7.  education is a ordinal variable for level of education possessed by the respondent: 
high school (6 cases), some college (27 cases), bachelors degree (139 cases), gradu-
ate study (80 cases), and graduate degree (449 cases).

 8.  partisan.ID is a five-point ordinal variable (1–5) for the respondent’s partisanship. 
It is scaled: strong Democrat (310), weak Democrat (84), Independent (60), weak 
Republican (55), and strong Republican (172). The 10 cases coded as “don’t know” 
or “refuse” were given missing value indicators and imputed.

 9.  category_[] categorizes the agency type. The observed distribution of the 13 types 
is [38, 42, 30, 74, 52, 43, 80, 52, 56, 66, 87, 33, 55]. With “other” being the reference 
type, we scramble the order of these in the data to remove substantive labels for 
privacy reasons.

 10.   med.time indicates whether the respondent spent more or less than the sample 
median with representatives of interest groups. There were 442 less-than or equal-
to-the-median cases (coded 0) and 271 more-than cases (coded 1).

 11.  medt.contr is a created interaction variable crossing med.time with contracting.

 12.  gov.ideology is the state government ideology from Berry et al. (1998), which 
ranges from 0 to 100. When used in our analysis we observed in this sample a 
mean of 48.018 and a standard deviation of 25.976. To access updated data: http://
www.bama.ua.edu/rcfording/stateideology.html.

 13.  lobbyists is the total state lobbying registrants in 2000–1 from Gray and Lowery 
(1996, 2001). Here we observed a mean of 670.84 and a standard deviation of 
425.89.

 14.  nonprofits provides the total number of nonprofit groups in the respondents’ state 
in the year 2008. Since the number is very large we divided it by 10,000 to put it on 
a meaningful scale in the model results. The sample has a mean of mean of 2.6833 
and a standard deviation of 2.5259 (scaled).

APPendIx B. McMc estimation theoretical Background

MCMC techniques solve a lingering problem in Bayesian analysis. Often Bayesian 
model specifications that were either interesting or realistic produced inference prob-
lems that were analytically intractable. The basic principle behind MCMC techniques 
is that if  an iterative chain can be set up carefully and run long enough, then empirical 
estimations of quantities of interest can be obtained from chain values. So to esti-
mate multidimensional probability structures (i.e., like desired posteriors), we start a 
Markov chain in the appropriate sample space and allow it to run until it settles into 
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the correct distribution. Then when it runs for some time confined to this particular 
distribution, we can collect statistics such as means, variances, and quantiles from the 
simulated values.

The Gibbs sampler variant of  MCMC (Geman and Geman 1984) works as fol-
lows. For convenience define φ β γ τ= [ , , , ]b  as the vector of  unknown parameters. Call 
φ[ ]i  the φ vector where the ith parameter is removed from the vector (temporarily 
omitted). The Gibbs sampler draws from the complete conditional distribution for 
the “left out” value: π φ φ( | )[ ]i i , repeating for each value in the vector. When each of 
the parameters has been updated in this way, then the cycle recommences with the 
completely new vector φ. This procedure will converge to a limiting distribution that 
is the target posterior, provided that the chain is—ergodic A chain is ergodic if  all 
of  its states are ergodic—aperiodic and positive recurrent. A sufficient condition for 
aperiodicity is that the probability of  remaining in the same state is nonzero (discrete 
chains) or the probability of  remaining in the same region is nonzero (continuous 
chains): P( , ) > 0X X . A state is positive recurrent if  the mean time to transition back 
to the same state is bounded. A  chain is positive recurrent if  and only if  it has a 
stationary distribution, π π, : ( , ) = ( )

=1
∋

→∞ ∑lim
n k

n kP Y Z Y  for all Y and Z in the param-
eter space. The ergodic theorem is foundational to MCMC work. It is essentially the 
strong law of large numbers in a Markov chain sense: The mean of chain values con-
verges almost surely to strongly consistent estimates of  the parameters of  the limiting 
distribution, despite dependence on some state space S ∈ℜ for a given transition 
kernel and initial distribution. These properties for the Gibbs sampler are well stud-
ied and are not provided here. See Carlin and Louis (2000), Gamerman and Lopes 
(2006), Gelfand and Smith (1990), Gelman and Rubin (1992), Gelman et al. (2003), 
Geweke (1989), Tanner (1996) (to name just a few) for excellent comprehensive dis-
cussions of the theory and practice of  Gibbs sampling and MCMC in general. The 
original article on the statistical application of Gibbs sampling (Geman and Geman 
1984), however, is a far more demanding read and applies the algorithm to photo 
image restoration.

An added wrinkle is required in this application because the complete condition-
als for γ parameters do not have an easily obtainable form. In these cases an update is 
produced for these parameters using a modified Metropolis–Hastings (Hastings 1970; 
Metropolis and Ulam 1949; Metropolis et al. 1953) step within the Gibbs sampling 
(Cohen et al. 1998; Gamerman and Lopes 2006). This works as follows. First trans-
form γ j  ( j J∈  parameters in γ  such that it has support over ℜ) and draw a normal 
approximation, γ̂ j , centered at the current value of γ j  in the simulation and using the 
variance from past iterations, s

jγ
2  (using 1 as a starting value). Then at the kth itera-

tion, take a draw from the conditional π γ φ( | )[ ]
ˆ
i j  and make the following transition to 
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So unlike the Gibbs sampler, the Metropolis–Hastings algorithm does not neces-
sitate movement on every iteration. In fact, it can be shown both that the Gibbs sam-
pler is a generalization of Metropolis–Hastings where the probability of accepting 
the candidate value is always 1 (Tanner 1996, 182), and that Metropolis–Hastings is a 
generalization of the Gibbs sampler where movement is not necessary, the full condi-
tionals are not required, and the previous value of the component to be (potentially) 
updated is consulted (Besag et al. 1995; Gamerman and Lopes 2007).

The “Metropolis within Gibbs” algorithm described here is distinct from two other 
hybrid techniques and should not be confused with those. One of those approaches is 
to use the Metropolis–Hastings algorithm only when computationally difficult steps 
for a parameter are encountered during the run (Gelman 1992). In addition, some 
authors (Tierney 1991) recommend switching back and forth between the two methods 
as a way of avoiding areas of the posterior density that are dominated by local max-
ima. The method applied here uses the hybrid described not for such computational 
reasons (although they are not precluded) but because the form of the hierarchical 
model produces a posterior where the full set of conditionals are simply unavailable.

The ergodic theorem shows that after a sufficiently large number of chain itera-
tions are performed, then subsequent draws are from the target limiting posterior dis-
tribution: P p y ni i i( | , , , )1 2δ δ . Reality is rarely this clear. Two primary philosophies 
compete for adherents among applied researchers. Gelman and Rubin (1992) suggest 
using the EM algorithm (or some variant) to find the mode or modes of the posterior, 
then create an over-dispersed estimate of the posterior as a starting point for multiple 
chains. Convergence is assessed by comparing within-chain variance against between-
chain variance with the idea that, at convergence, variability within each chain should 
be similar and will resemble the estimated target variance. Conversely, Geyer (1992) 
recommends implementing one long chain and using well-known time series statistics 
used to assess convergence. In practice, most researchers are not as canonical as either 
specified approach and perform some combination of them. The approach taken here 
is to run multiple chains during a burn-in period, assess convergence, and then upon 
success allow one chain to run longer. The burn-in period is an interval in which the 
Markov chain is allowed to run without concern for its trajectory. The idea is to let 
the chain run for a sufficiently long period of time as to “forget” its starting point. If  
the chain reaches an equilibrium condition, it is moving through the state space of 
the target distribution, and empirical draws of its position represent samples from 
the desired limiting distribution. So assessing convergence is vital to determining the 
quality of the resulting inferences.

Another very useful tool is Geweke’s (1992) convergence statistic. The idea behind 
this test is to compare some proportion of the early part of the chain after the burn-in 
period with some nonoverlapping proportion of the late part of the chain. Geweke 
proposes a difference of means test using an asymptotic approximation of the stand-
ard error for the difference. Since the test statistic is asymptotically standard nor-
mal, then for reasonably long chains small values imply that the chain has converged, 
which is quite intuitive. Conversely, values that are atypical of a standard normal 
distribution provide evidence that the two selected portions of the chain differ reason-
ably (in the first moment), and one then concludes that the chain has not converged. 
The selected window proportions can change the value of the test statistic if  the chain 
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has not converged. Therefore a further diagnostic procedure involves experimenting 
with these proportions.

APPendIx c. R code for McMc estimation with Jags

This appendix provides the R code to set up data structures and run the model with 
rjags. This process is given for only 1 of the 10 replicate datasets from the multiple 
imputation process. Our results were almost identical across the 10 sets of marginal 
posteriors (table 1), but in general the 10 sets of coefficient estimates are averaged 
and the 10 sets of standard errors are combined by the square root of the sum of 
the within-model variance plus 10/9 times the between-coefficient variance (Little and 
Rubin 1983, 2002; Rubin 1987). All of the code below and one of our replicate data-
sets are available online at: http://dvn.iq.harvard.edu/dvn/dv/jgill. This code assumes 
that you are working in a directory named Article.JPART.

# LOAD REQUIRED LIBRARIES
library(rjags); library(arm); library(coda); library(superdiag)

# LOAD DATA WITH INDIVIDUAL-LEVEL AND GROUP-LEVEL VARIABLES
asap.individual.data <- read.table(“Article.JPART/asap.individual.dat”,header-TRUE)
asap.group.data <- read.table(“Article.JPART/asap.group.dat”,header-TRUE)

# CONDITION THE TERMINAL JAGS DATA INTO A LIST FOR rjags
system(“echo ‘asap.jags.list <- list(‘ > Article.JPART/asap.rjags.dat”)
system(“tail -c +31 Article.JPART/asap.jags.2.dat >> Article.JPART/asap.rjags.dat”)
system(“cat Article.JPART/asap.rjags.dat | sed -e ‘s/)/),/’ > Article.JPART/temp”)
system(“mv Article.JPART/temp Article.JPART/asap.rjags.dat”) 
system(“echo ‘STATES <- 50, SUBJECTS <- 713)’ >> Article.JPART/asap.rjags.dat”)
source(“Article.JPART/asap.rjags.dat”)
names(asap.jags.list) <- c(“state.id”, “contracting”, “gov.influence”,
“leg.influence”, “elect.board”, “years.tenure”, “education”, “party.ID”,
“category2”, “category3”, “category4”, “category5”, “category6”, “category7”,
“category8”, “category9”, “category10”, “category11”, “category12”, “med.time”,
“medt.contr”, “grp.influence”, “gov.ideology”, “lobbyists”, “nonprofits”,
“STATES”, “SUBJECTS”)

# DEFINE THE MODEL
asap.model2.rjags <- function() {
for (i in 1:SUBJECTS) {
mu[i] <- alpha[state.id[i]] 

+ beta[1]*contracting[i] + beta[2]*gov.influence[i] + beta[3]*leg.influence[i] 
+ beta[4]*elect.board[i] + beta[5]*years.tenure[i] + beta[6]*education[i] 
+ beta[7]*party.ID[i] + beta[8]*category2[i] + beta[9]*category3[i]
+ beta[10]*category4[i] + beta[11]*category5[i] + beta[12]*category6[i] 
+ beta[13]*category7[i] + beta[14]*category8[i] + beta[15]*category9[i]
+ beta[16]*category10[i] + beta[17]*category11[i] + beta[18]*category12[i] 
+ beta[19]*med.time[i] + beta[20]*medt.contr[i] 

grp.influence[i] ~ dnorm(mu[i],tau.y)
} 
for (j in 1:STATES) {
eta[j] <- gamma[1]*gov.ideology[j] + gamma[2]*lobbyists[j] 
+ gamma[3]*nonprofits[j] 
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alpha[j] ~ dnorm(eta[j],tau.alpha)
} 
beta[1] ~ dnorm(0.070,1); # PRIOR MEANS FROM KELLEHER AND YACKEE 2009, MODEL 3 
beta[2] ~ dnorm(-0.054,1);
beta[3] ~ dnorm(0.139,1);
beta[4] ~ dnorm(0.051,1);
beta[5] ~ dnorm(0.017,1);
beta[6] ~ dnorm(0.056,1);
beta[7] ~ dnorm(0.039,1);
beta[8] ~ dnorm(0.0,1); # DIFFUSE PRIORS
beta[9] ~ dnorm(0.0,1);
beta[10] ~ dnorm(0.0,1);
beta[11] ~ dnorm(0.0,1);
beta[12] ~ dnorm(0.0,1);
beta[13] ~ dnorm(0.0,1);
beta[14] ~ dnorm(0.0,1);
beta[15] ~ dnorm(0.0,1);
beta[16] ~ dnorm(0.0,1);
beta[17] ~ dnorm(0.0,1);
beta[18] ~ dnorm(0.0,1);
beta[19] ~ dnorm(0.184,1); # PRIOR MEANS FROM KELLEHER AND YACKEE 2009, MODEL 3
beta[20] ~ dnorm(0.156,1);
gamma[1] ~ dnorm(0.0,1); # DIFFUSE PRIORS
gamma[2] ~ dnorm(0.0,1);
gamma[3] ~ dnorm(0.0,1);
tau.y ~ dgamma(1.0,1);
tau.alpha ~ dgamma(1.0,1);
}

# WRITE THE MODEL STATEMENT OUT TO A FILE
write.model(asap.model2.rjags, “Article.JPART/asap.model2.rjags”)

# SET THE INITIAL (STARTING VALUES)
inits <- list(tau <- 10, tau.alpha <- 10, alpha <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
beta <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
gamma <- c(1,1,1))

# RUN THE MODEL
asap2.model <- jags.model(file=“Article.JPART/asap.model2.rjags”, 
data=asap.jags.list, n.chains=3, n.adapt=0)
update(asap2.model, n.iter=250000)
asap2.mcmc <- coda.samples(model=asap2.model, variable.names=names(asap.jags.list),
n.iter=250000)
summary(asap2.mcmc)

# CHECK CONVERGENCE
superdiag(asap2.mcmc)

# GET THE DEVIANCE AND THE DIC
asap2.dic <- dic.samples(asap2.model, n.iter=250000, type=“pD”)

D
ow

nloaded from
 https://academ

ic.oup.com
/jpart/article/23/2/457/1003493 by guest on 24 April 2024



Journal of Public Administration research and theory 492

references

Akaike, H. 1976. Canonical correlation analysis of time series and the use of an information crite-
rion. In System identification: Advances and case studies, ed. R. K. Mehra and D. G. Lainiotis, 
52–107. New York: Academic Press.

Berry, William D., Evan J. Ringquist, Richard C. Fording, and Russel L. Hanson. 1998. Measuring 
citizen and government ideology in the American states, 1960–93. American Journal of Political 
Science 42(1):327–48.

Besag, J., P. J. Green, D. M. Higdon, and K. L. Mengersen. 1995. Bayesian computation and sto-
chastic systems (with discussion). Statistical Science 10:3–66.

Birnbaum, A. 1962. On the foundations of statistical inference. Journal of the American Statistical 
Association 57:269–306.

Bowling, Cynthia J., Jennifer Jones, and Christine A. Kelleher. 2006. Cracked ceiling, firmer floors, 
and weakening walls: Trends and patterns in gender representation among executives in 
American state governments, 1970–2000. Public Administration Review 66(6):823–36.

Bowling, Cynthia J., and Deil S.  Wright. 1998. Change and continuity in state administration: 
Administrative leadership across four decades. Public Administration Review 58(5):429–44.

Boyne, George A., Kenneth J. Meier, Laurence J. O’Toole, and Richard M. Walker. 2005. Where next? 
Research directions on performance in public organizations. Journal of Public Administration 
Research and Theory 15:633–9.

Brudney, Jeffrey L., and Ted F. Hebert. 1987. State agencies and their environments: Examining the 
influence of important external actors. The Journal of Politics 49(1):186–206.

Brudney, Jeffrey L., Sergio Fernandez, Jay Eungha Ryu, and Deil S. Wright. 2005. Exploring and 
explaining contracting out patterns in the American states. Journal of Public Administration 
Research and Theory 15(3):393–419.

Carlin, B. P., and T. A. Louis. 2000. Bayes and empirical Bayes methods for data analysis, 2nd ed. 
New York: Chapman & Hall.

Cohen, J., D.  Nagin, G.  Wallstrom, and L.  Wasserman. 1998. Hierarchical Bayesian analysis of 
arrest rates. Journal of the American Statistical Association 93:1260–70.

Cranmer, Skyler, and Jeff Gill. 2013. We have to be discrete about this: A non-parametric imputa-
tion technique for missing categorical data. British Journal of Political Science. Forthcoming.

Fisher, R. A. 1922. On the mathematical foundations of theoretical statistics. Philosophical 
Transactions of the Royal Statistical Society of London A 222:309–60.

———. 1925a. Statistical methods for research workers. Edinburgh, UK: Oliver and Boyd.
———. 1925b. Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society 

22:700–25.
———. 1930. Inverse probability. Proceedings of the Cambridge Philosophical Society 26:528–35.
———. 1934. The design of experiments, 1st ed. Edinburgh, UK: Oliver and Boyd.
Gamerman, D., and H. F. Lopes. 2006. Markov chain Monte Carlo, 2nd ed. New York: Chapman 

& Hall.
Gelfand, A. E., and A. F. M. Smith. 1990. Sampling based approaches to calculating marginal densi-

ties. Journal of the American Statistical Association 85:398–409.
Gelman, A. 1992. Iterative and non-iterative simulation algorithms. Computing Science and Statistics 

24:433–8.
Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2003. Bayesian data analysis, 2nd ed. New 

York: Chapman & Hall.
Gelman, A., and J.  Hill. 2007. Data analysis using regression and multilevel/hierarchical models. 

Cambridge, UK: Cambridge University Press.
Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. 

Statistical Science 7:457–511.
Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian res-

toration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6:721–41.
Geyer, C. J. 1992. Practical Markov chain Monte Carlo. Statistical Science 7:473–511.

D
ow

nloaded from
 https://academ

ic.oup.com
/jpart/article/23/2/457/1003493 by guest on 24 April 2024



Gill and Witko Bayesian Analytical Methods 493

Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration. 
Econometrica 57:1317–39.

———. 1992. Evaluating the accuracy of sampling-based approaches to the calculation of posterior 
moments. In Bayesian statistics 4, ed. J. M. Bernardo, A. F. M. Smith, A. P. Dawid, and J. O. 
Berger, 169–93. Oxford, UK: Oxford University Press.

Gill, J. 1999. The insignificance of null hypothesis significance testing. Political Research Quarterly 
52:647–74.

———. 2008. Bayesian methods for the social and behavioral sciences, 2nd ed. New York: Chapman 
& Hall.

———. 2008. Is partial-dimension convergence a problem for inferences from MCMC algorithms? 
Political Analysis 16:153–78.

Gill, Jeff, and George Casella. 2009. Nonparametric priors for ordinal Bayesian social science mod-
els: Specification and estimation. Journal of the American Statistical Association 104:453–64.

Gill, Jeff, and John Freeman. 2013. Dynamic elicited priors for updating covert networks. Network 
Sciences. Forthcoming.

Gill, Jeff, and Kenneth J. Meier. 2000. Public administration research and practice: A methodologi-
cal manifesto. Journal of Public Administration Research and Theory 10(1):157–200.

Gill, Jeff, and Lee Walker. 2005. Elicited priors for Bayesian model specifications in political science 
research. Journal of Politics 67:841–72.

Gray, Virginia, and David Lowery. 1996. The population ecology of interest representation: Lobbying 
communities in the American states. Ann Arbor: University of Michigan Press.

———. 2001. The institutionalization of state communities of organized interests. Political Research 
Quarterly 54:265–84.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. 
Biometrika 57:97–109.

Kass, R. E., and A. E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 
90:773–95.

Kelleher, Christine A., and Susan Webb Yackee. 2006. Who’s whispering in your ear? The influence 
of third parties over state agency decisions. Political Research Quarterly 59(4):629–43.

———. 2009. A political consequence of contracting: Organized interests and state agency decision-
making. The Journal of Public Administration Research and Theory 19(3):579–602.

Kettle, Donald F. 2000. The transformation of governance: Globalization, devolution and the role 
of government. Public Administration Review 60:488–97.

Little, R. J. A., and D. B. Rubin. 1983. On jointly estimating parameters and missing data by maxi-
mizing the complete-data likelihood. The American Statistician 37:218–20.

———. 2002. Statistical analysis with missing data, 2nd ed. New York: John Wiley & Sons.
Mackenzie, Calvin G., and Paul  Light. 1987. Presidential Appointees, 1964–1984 (ICPSR Study 

8458). Ann Arbor, MI: Intra-University Consortium for Political and Social Research.
Meier, Kenneth J., and Laurence J. O’Toole, Jr. 2006. Political control versus bureaucratic values: 

Reframing the debate. Public Administration Review 66(2): 177–92.
Metropolis, N., and S. Ulam. 1949. The Monte Carlo method. Journal of the American Statistical 

Association 44:335–41.
Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of 

state calculations by fast computing machines. Journal of Chemical Physics 21:1087–91.
Miller, Cheryl M. 1987. State administrator perceptions of the policy influence of other actors: Is 

less better? Public Administration Review 47(3):239–45.
Miller, Cheryl M., and Deil S.  Wright. 2009. Who’s minding which store? Institutional and 

other actors’ influence on administrative rulemaking in state agencies, 1978–2004. Public 
Administration Quarterly 33(3):397–428.

Moe, Terry M. 1985. Control and feedback in economic regulation: The case of the NLRB. The 
American Political Science Review 79(4):1094–116.

Neyman, J., and E. S.  Pearson. 1928a. On the use and interpretation of certain test criteria for  
purposes of statistical inference. Part I. Biometrika 20A:175–240.

D
ow

nloaded from
 https://academ

ic.oup.com
/jpart/article/23/2/457/1003493 by guest on 24 April 2024



Journal of Public Administration research and theory 494

———. 1928b. On the use and interpretation of certain test criteria for purposes of statistical  
inference. Part II. Biometrika 20A:263–294.

———. 1933a. On the problem of the most efficient test of statistical hypotheses. Philosophical 
Transactions of the Royal Statistical Society, Series A 231:289–337.

———. 1933b. The testing of statistical hypotheses in relation to probabilities a priori. Proceedings 
of the Cambridge Philosophical Society 24:492–510.

———. 1936. Sufficient statistics and uniformly most powerful tests of statistical hypotheses. 
Statistical Research Memorandum 1:113–137.

O’Toole, Laurence J., Jr., and Kenneth J. Meier. 2006. Networking in the penumbra: Public man-
agement cooptative links and distributional consequences. International Public Management 
Journal 9(3):271–94.

Potoski, Matthew. 1999. Managing uncertainty through bureaucratic design: Administrative proce-
dures and state air pollution control agencies. Journal of Public Administration Research and 
Theory 9(4):623–40.

Raftery, A. E. 1995. Bayesian model selection in social research. Sociological Methodology 25:111–64.
Reenock, Christopher M. and Brian J. Gerber. 2008. Political insulation, information exchange, and 

interest group access to the bureaucracy. Journal of Public Administration Research and Theory 
18:415–440.

Rubin, D. B. 1987. Multiple imputation for nonresponse in surveys. New York: John Wiley & Sons.
———. 1996. Multiple imputation after 18+ years. Journal of the American Statistical Association 

91:473–89.
Samaniego, Fancisco J. 2010. A comparison of the Bayesian and Frequentist approaches to estimation. 

New York: Springer-Verlag.
Schafer, J. L. 1997. Analysis of incomplete multivariate data. London: Chapman & Hall.
Spiegelhalter, D., Best, N. G., Carlin, B., and van der Linde, A. 2002. Bayesian Measures of Model 

Complexity and Fit. Journal of the Royal Statistical Society, Series B, 64: 583–640.
Stigler, George. 1971. The theory of economic regulation. Bell Journal of Economics and Management 

Science 2:3–21.
Tanner, Martin. 1996. Tools for statistical inference, 3rd ed. New York: Springer-Verlag.
Tierney, L. 1991. Exploring posterior distributions using Markov chains. In Computing science 

and statistics: Proceedings of the 23rd symposium on the interface, ed. M. Keramidas, 563–70. 
Fairfax Station, VA: Interface Foundation.

Tsai, Tsung-han, and Jeff Gill. 2012. superdiag: A comprehensive test suite for Markov chain non-
convergence. The Political Methodologist 19:12–18.

Waterman, Richard W., and Kenneth J. Meier. 1998. Principal-agent models: An expansion? Journal 
of Public Administration Research and Theory 8(2):173–202.

Waterman, Richard W., Amelia Rouse, and Robert Wright. 1998. The venues of influence: A new 
theory of political control of the bureaucracy. Journal of Public Administration Research and 
Theory 8(1):13–38.

Whitford, Andrew B. 2002. Decentralization and political control of the bureaucracy. Journal of 
Theoretical Politics 14(2):167–93.

Witko, Christopher. 2006. PACs, issue context and congressional decision-making. Political Research 
Quarterly 59(2): 283–95.

———. 2011. Campaign contributions, access, and government contracting. Journal of Public 
Administration Research and Theory 21(4):761–78.

Wood, Dan B., and Richard W. Waterman. 1991. The dynamics of political control of the bureau-
cracy. The American Political Science Review 85(3):801–28.

Yackee, Susan Webb. 2006. Sweet talking the fourth branch: Influence of interest group com-
ments on federal agency rule-making. Journal of Public Administration Research and Theory 
16(1):103–24.

D
ow

nloaded from
 https://academ

ic.oup.com
/jpart/article/23/2/457/1003493 by guest on 24 April 2024


